

ESTUDOS PARA A EXPANSÃO DA TRANSMISSÃO

DIAGNÓSTICO DAS CONDIÇÕES DE ATENDIMENTO ELÉTRICO AOS ESTADOS DA REGIÃO SUL E MATO GROSSO DO SUL

Período de 2024 a 2031

Outubro de 2019

GOVERNO FEDERAL MINISTÉRIO DE MINAS E ENERGIA MME/SPE

Ministério de Minas e Energia Ministro

Bento Albuquerque

Secretário-Executivo do MME

Marisete Fátima Dadald Pereira

Secretário de Planejamento e Desenvolvimento Energético

Reive Barros

Secretário de Energia Elétrica

Ricardo Cyrino

Secretário de Petróleo, Gás Natural e Biocombustíveis

Márcio Félix Carvalho Bezerra

Secretário de Geologia, Mineração e Transformação Mineral

Alexandre Vidigal de Oliveira

Empresa pública, vinculada ao Ministério de Minas e Energia, instituída nos termos da Lei nº 10.847, de 15 de março de 2004, a EPE tem por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética, dentre outras.

Presidente

Thiago Vasconcellos Barral Ferreira

Diretor de Estudos Econômico-Energéticos e Ambientais

Giovani Vitória Machado

Diretor de Estudos de Energia Elétrica

Erik Eduardo Rego

Diretor de Estudos de Petróleo, Gás e Biocombustível

José Mauro Ferreira Coelho

Diretor de Gestão Corporativa

Álvaro Henrique Matias Pereira

URL: http://www.epe.gov.br

Sede

SCN, Qd. 01, Bl. C, nº 85, Sl. 1712/1714

70711-902 - Brasília – DF

Escritório Central

Av. Rio Branco, 01 – 11º Andar 20090-003 - Rio de Janeiro – RJ

ESTUDOS PARA A EXPANSÃO DA TRANSMISSÃO

DIAGNÓSTICO DAS CONDIÇÕES DE ATENDIMENTO ELÉTRICO AOS ESTADOS DA REGIÃO SUL E MATO GROSSO DO SUL

Período de 2024 a 2031

Coordenação Geral

Erik Eduardo Rego

Coordenação Executiva

José Marcos Bressane

Equipe Técnica

Thiago Dourado Marcos Farinha Rodrigo Ribeiro Jean Morassi

N°. EPE-DEE-RE-082/2019-r0

Data: 10 de outubro de 2019

IDENTIFICAÇÃO DO DOCUMENTO E REVISÕES

Área de Estudo

ESTUDOS PARA A EXPANSÃO DA TRANSMISSÃO

Estudo

DIAGNÓSTICO DAS CONDIÇÕES DE ATENDIMENTO ELÉTRICO AOS ESTADOS DA REGIÃO SUL E MATO GROSSO DO SUL

Macro-atividade

Período de 2024 a 2031

Ref. Interna (se aplicável)

Revisões	Data de emissão	Descrição sucinta
r0	10/10/2019	Emissão original

APRESENTAÇÃO

Este relatório é um estudo com objetivo de avaliar o desempenho elétrico do sistema que atende os estados do Mato Grosso do Sul, Paraná, Santa Catarina e Rio Grande do Sul e apresentar um diagnóstico das condições de atendimento do sistema no período de 2024 a 2031.

SUMÁRIO

1	IN	FRODUÇÃO	2
2	RE	COMENDAÇÕES	3
3	DE	SCRIÇÃO DO SISTEMA ELÉTRICO DE INTERESSE	5
	3.1	Evolução da Expansão do Mercado	6
	3.2	EVOLUÇÃO DA EXPANSÃO DA GERAÇÃO	8
	3.3	EVOLUÇÃO DA EXPANSÃO DA TRANSMISSÃO	10
	3.3.1	Expansão no Estado do Mato Grosso do Sul	10
	3.3.2	Expansão no Estado do Paraná	12
	3.3.3	Expansão no Estado de Santa Catarina	16
	3.3.4	Expansão no Estado do Rio Grande do Sul	21
4	DI	AGNÓSTICO DO SISTEMA DE TRANSMISSÃO	28
	4.1	ESTADO DO MATO GROSSO DO SUL - ANÁLISE DO DESEMPENHO ELÉTRICO DA REDE	28
	4.2	ESTADO DO PARANÁ - ANÁLISE DO DESEMPENHO ELÉTRICO DA REDE	2 9
	4.3	ESTADO DE SANTA CATARINA - ANÁLISE DO DESEMPENHO ELÉTRICO DA REDE	36
	4.4	ESTADO DO RIO GRANDE DO SUL - ANÁLISE DO DESEMPENHO ELÉTRICO DA REDE	41
5	RE	FERÊNCIAS	47
6	EO	UIPE TÉCNICA	49

1 INTRODUÇÃO

O principal objetivo desse relatório é o de avaliar o desempenho elétrico do sistema que atende os estados do Mato Grosso do Sul, Paraná, Santa Catarina e Rio Grande do Sul e apresentar um diagnóstico das condições de atendimento do sistema no período de 2024 a 2031.

Os principais produtos deste trabalho são a identificação da necessidade de novos estudos específicos de planejamento da expansão regional, bem como o de possibilitar uma visão do panorama do impacto global das expansões já previstas e recomendadas em estudos anteriores.

Para o objetivo deste documento tomou-se como referência os casos de trabalho divulgados para o Plano Decenal de Energia 2029 no dia 17/05/2019. Dentro do processo cíclico dos estudos de planejamento, os novos estudos identificados, uma vez priorizados, passarão a ser desenvolvidos a partir deste ano de 2019, realimentando as informações indicativas que constarão do novo PDE 2029.

2 RECOMENDAÇÕES

Considerando as análises de desempenho elétrico do sistema de transmissão da região Sul e do estado do Mato Grosso do Sul, realizadas com os casos de trabalho associados ao Plano Decenal de Energia 2029, bem como as ponderações efetuadas ao longo do Capítulo 4, recomendamos o desenvolvimento dos seguintes estudos específicos:

Região Sul

Estudo para diagnóstico do desempenho elétrico da malha de 525kV e interligação Sul –
 Sudeste face às expansões previstas nos estudos de planejamento.

Paraná

 Estudo para atendimento às regiões Noroeste e Oeste do estado visando solucionar os problemas verificados nas subestações Medianeira, Foz do Iguaçu Norte, Realeza Sul, Cascavel Oeste, Apucarana, Maringá, Sarandi e Londrina.

Santa Catarina

- Estudo para atendimento às regiões Sul e Extremo Sul do estado visando solucionar os problemas verificados nas subestações Forquilhinha e Siderópolis.
- Estudo para atendimento às regiões de Biguaçu e Palhoça visando solucionar os problemas de tensão verificados no diagnóstico do sistema.

Rio Grande do Sul

- Estudo para atendimento às regiões Norte e Noroeste do estado visando solucionar os problemas verificados nas subestações Guarita, Santa Marta, Lagoa Vermelha e Tapera 2;
- Estudo para atendimento à região Sul do estado visando solucionar os problemas verificados nas subestações Pelotas 3 e Quinta;
- Estudo para atendimento à região Central do estado solucionar os problemas verificados nas subestações Candelária 2, Santa Cruz, e Lajeado 2 e Lajeado 3.
- Estudo para atendimento à região Oeste do estado visando solucionar os problemas verificados na subestação Santa Maria 3;

Além da realização dos estudos de planejamento listados anteriormente, recomenda-se acompanhar a evolução do mercado e do parque gerador de algumas regiões específicas do sistema visando identificar e, eventualmente, ratificar a necessidade de elaboração de um novo estudo de expansão da transmissão em avaliações de diagnóstico de rede dos casos base de Planos Decenais posteriores.

As regiões a seguir devem ser monitoradas no próximo ciclo de diagnóstico dos casos de trabalho do Plano Decenal:

Mato Grosso do Sul

 As regiões atendidas pelas subestações de Dourados, Dourados 2 e Ivinhema, pois apresentaram problemas de tensão em condições de contingência simples apenas no ano horizonte de análise.

<u>Paraná</u>

 A região atendida pela subestação Pato Branco, que apresentou degradação dos níveis de tensão em condições de contingência simples apenas a partir do 2030.

Santa Catarina

• A região atendida pela subestação Canoinhas, que apresentou fluxos elevados na transformação de fronteira a partir do ano 2029.

3 DESCRIÇÃO DO SISTEMA ELÉTRICO DE INTERESSE

O sistema elétrico da região de interesse contempla uma extensa malha de transmissão que abrange os estados do Paraná, Santa Catarina e Rio Grande do Sul. Esse sistema, representado na Figura 3-1 a seguir, é constituído por instalações de Rede Básica nas tensões de 525 kV e 230 kV, e por Demais Instalações de Transmissão (DIT) nas tensões 138 kV e 69 kV.

Figura 3-1 Sistema Elétrico da Região Sul e estado do Mato Grosso do Sul - PDE 2027 ano horizonte.

Além do atendimento ao mercado local, esse sistema participa da otimização energética entre as regiões Sul e Sudeste/Centro-Oeste, por meio de conexões com os estados de São Paulo e Mato Grosso do Sul. Adicionalmente, cabe destacar que as interligações internacionais constituem característica marcante da Região Sul, destacando-se as conexões com o Uruguai por meio das Conversoras de Rivera (70 MW) e Melo (500MW), a interligação com a Argentina pela Conversoras de Garabi (2.200 MW) e Uruguaiana (50 MW), e a interligação com o Paraguai por meio da Conversora de Aracay (55 MW).

No caso específico do Mato Grosso do Sul, a malha de transmissão que supre o estado é composta basicamente por linhas de transmissão no nível de tensão de 230kV que permeiam os grandes centros de consumo da região e o interligam com os estados de São Paulo, Paraná e, em um futuro próximo, ao estado de Goiás.

3.1 Evolução da Expansão do Mercado

RS

Região Sul + MS

4002,1

10740,0

4077,6

10986,7

Os maiores centros de consumo da região Sul estão localizados nas proximidades das regiões metropolitanas de Porto Alegre e Caxias do Sul, no estado do Rio Grande do Sul; na área Leste de Santa Catarina; na área metropolitana de Curitiba e região norte do Paraná. No caso específico do estado do Mato Grosso do Sul, a região metropolitana da capital Campo Grande é a que concentra a maior parcela do mercado do estado.

As figuras a seguir apresentam a evolução das previsões de carga encaminhadas pelas distribuidoras e que constam dos casos base de trabalho do Plano Decenal 2029. É importante destacar que esses casos base também possuem previsões de crescimento do mercado para os anos subsequentes ao horizonte de análise do Plano Decenal (2030 e 2031).

EVOLUÇÃO DO MERCADO PD 29

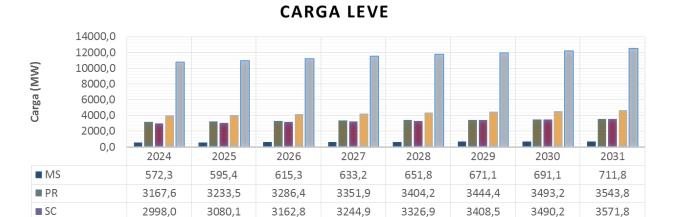


Figura 3-2 Evolução do mercado no período 2024 a 2031 — Patamar de Carga Leve

4265,9

11495,9

4363,2

11746,1

4458,2

11982,2

4555,8

12230,3

4655,9

12483,3

4171,6

11236,0

EVOLUÇÃO DO MERCADO PD 29 CARGA MÉDIA

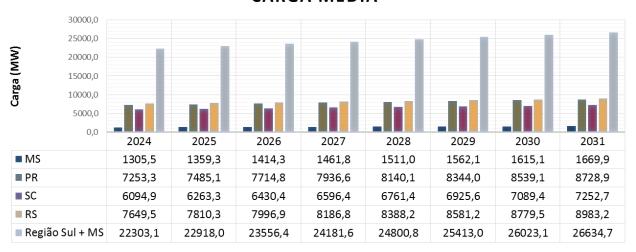


Figura 3-3 Evolução do mercado no período 2024 a 2031 — Patamar de Carga Média

EVOLUÇÃO DO MERCADO PD 29 CARGA PESADA

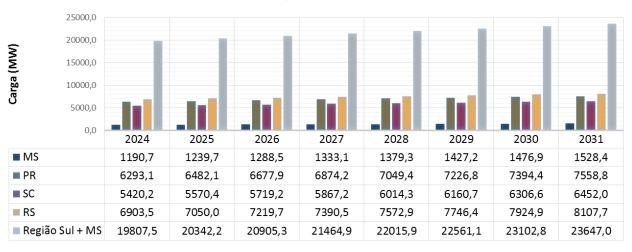
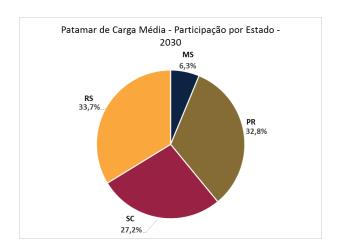



Figura 3-4 Evolução do mercado no período 2024 a 2030 — Patamar de Carga Pesada

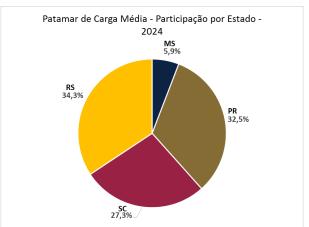


Figura 3-5 Percentual de participação dos estados no montante de carga regional-Patamar de Carga Média

Com base nas informações contidas nas figuras anteriores, pode-se realizar os seguintes comentários:

- → Em valores absolutos, a carga média representa o patamar de carga com crescimento mais expressivo, pois apresenta uma variação de cerca de 4300MW entre os anos de 2024 e 2031. Esse aumento corresponde a uma variação percentual de 19,4% em relação à carga de 2024.
- → O crescimento médio do mercado da região sul é de 2,6%. Os estados do Rio Grande do Sul, Santa Catarina e Paraná apresentaram, respectivamente, crescimentos médios anuais de 2,3%, 2,5% e 2,7% no patamar de carga média no período de 2024 a 2031.
- → O estado do Mato Grosso do Sul foi o que apresentou o maior crescimento de mercado médio anual que foi da ordem de 3,6%.

3.2 Evolução da Expansão da Geração

Os casos base do planejamento da transmissão referentes ao PDE 2029 apresentam a indicação de crescimento da capacidade instalada do parque gerador de cerca de 1,3% (540MW) ¹ considerando o período de 2024 a 2031. No caso base de 2031 está representado um parque gerador da ordem de 41000MW composto majoritariamente por empreendimentos hidrelétricos de grande porte localizados nas bacias dos rios Uruguai, Iguaçu e Paraná, que correspondem a cerca de 75% (~31000MW) da capacidade instalada total representada na região.

8

¹ Os valores apresentados não consideram as usinas indicativas do Plano de Expansão de Referência indicados no Relatório do PDE 2029. Caso essas expansões indicativas tivessem sido consideradas, seriam adicionados ao ano de 2031 cerca de 10000MW entre empreendimentos termelétricos, hidráulicos e eólicos.

Além dos empreendimentos hidrelétricos de grande porte, o caso base de 2031 apresenta:

- → 1980MW de potência instalada de pequenas centrais hidrelétricas PCH ou centrais geradoras hidrelétricas CGH, distribuídos em quantidades praticamente uniformes entre os estados da região sul e o Mato Grosso do Sul.
- → 3800MW de capacidade instalada de empreendimentos eólicos, localizados majoritariamente no estado do Rio Grande do Sul;
- → 3300MW de potência instalada de empreendimentos termelétricos a gás natural ou a carvão;
- → 1200MW de capacidade instalada de empreendimentos termelétricos a biomassa, que estão localizados, em sua grande maioria, nos estados do Paraná e do Mato Grosso do Sul.

As tabelas a seguir mostram de forma mais detalhada a distribuição da matriz energética dos estados e permitem comparar as configurações representadas para os anos de 2024 e 2031.

Tabela 1 - Matriz energética da região sul e estado do Mato Grosso do Sul - Ano 2024

Fonte	RS (MW)	SC (MW)	PR (MW)	MS (MW)	TOTAL
UHE	1796,5	5647,8	22589,2	77,5	30110,9
PCH/CGH	561,2	581,3	533,3	307,8	1983,5
EOL	3560,8	222,6	11,5	0,0	3794,9
SOL	0,0	0,0	0,0	0,0	0,0
UTE	1548,0	857,0	504,0	384,0	3293,0
BIO	55,0	6,5	279,1	864,9	1205,5
TOTAL	7521,5	7315,1	23917,1	1634,2	40387,8

Tabela 2 - Matriz energética da região sul e estado do Mato Grosso do Sul - Ano 2031

Fonte	RS (MW)	SC (MW)	PR (MW)	MS (MW)	TOTAL
UHE	1796,5	5647,8	23048,3	158,5	30651,0
PCH/CGH	561,2	581,3	533,3	307,8	1983,5
EOL	3560,8	222,6	11,5	0,0	3794,9
SOL	0,0	0,0	0,0	0,0	0,0
UTE	1548,0	857,0	504,0	384,0	3293,0
BIO	55,0	6,5	279,1	864,9	1205,5
TOTAL	7521,5	7315,1	24376,2	1715,2	40927,9

3.3 Evolução da Expansão da Transmissão

3.3.1 Expansão no Estado do Mato Grosso do Sul

As tabelas a seguir apresentam o conjunto de empreendimentos de transmissão localizados no estado do Mato Grosso do Sul, ou que influenciam diretamente o desempenho elétrico de seu sistema, e que está representado nos casos base do Plano Decenal 2029. Esse conjunto de obras contempla um quantitativo expressivo de instalações de transmissão que foi recomendado no Estudo EPE-DEE-RE-69/2015-rev1 - Estudo de Atendimento Elétrico ao Estado do Mato Grosso do Sul e foram objeto de licitação no Leilão de Transmissão 005/2016.

Além desse estudo, nesse ciclo foram incluídas as obras associadas ao estudo de planejamento EPE-DEE-RE-1/2019-rev0 - Atendimento Elétrico ao Estado do Mato Grosso do Sul: Região de Naviraí, que recomendou a implantação da nova subestação de fronteira Iguatemi 2.

Tabela 3 - Expansões previstas para o estado do Mato Grosso do Sul - Linhas de Transmissão

	DESCRIÇÃO DA OBRA	DATA PREVISTA
LT 230 kV Imbirussu - Campo Grande 2, C2	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 50 km	2022
LT 230 kV Rio Brilhante - Campo Grande 2, C1	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 148 km Reator de Linha Manobrável 230 kV, 1 x 20 Mvar 3Φ // SE Rio Brilhante	2022 2022
LT 230 kV Ivinhema 2 - Nova Porto Primavera, C2	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 65 km	2022
LT 230 kV Rio Brilhante -	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 141 km	2022
Nova Porto Primavera, C2	Reator de Linha Fixo 230 kV, 1 x 16 Mvar 3Φ // SE Nova Porto Primavera	2022
LT 230 kV Rio Brilhante - Dourados 2, C1	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 117 km	2022
LT 230 kV Dourados 2 - Dourados, C2	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 43 km	2022
SECC LT 230 kV Dourados -	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 14,5 km	2022
Ivinhema 2, C1, na SE Dourados 2	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 14,5 km	2022
LT 230 kV Imbirussu - Campo Grande 2, C3	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 50 km	2025
SECC LT 230 kV Dourados -	Circuito Simples 230 kV, 2 x 1113 MCM (BlueJay), 15,5 km	2025
Anastácio, C1, na SE Maracaju 2	Circuito Simples 230 kV, 2 x 1113 MCM (BlueJay), 15,5 km	2025
SECC LT 230 kV Guaíra - Dourados, C1 (CD), na SE Iguatemi 2	Circuito Duplo 230 kV, 1 x 1113 MCM (BLUEJAY), 3 km	2025
SECC LT 230 kV Imbirussu -	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 2 km	2027
Campo Grande 2, C1, na SE Campo Grande 3	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 2 km	2027
SECC LT 230 kV Imbirussu -	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 2 km	2027
Campo Grande 2, C2, na SE Campo Grande 3	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 2 km	2027
SECC LT 230 kV Imbirussu -	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 2 km	2027
Campo Grande 2, C3, na SE Campo Grande 3	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 2 km	2027

Tabela 4 - Expansões previstas para o estado do Mato Grosso do Sul - Subestações

	DESCRIÇÃO DA OBRA	DATA PREVISTA
SE 230/138 kV Dourados 2	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2022
SE 230/138 kV Imbirussu	1° Capacitor em Derivação 230 kV, 1 x 100 Mvar 3Ф	2022
SE 230/138 kV Campo Grande 2	4° ATF 230/138 kV, 1 x 150 MVA 3Ф	2022
SE 230/138 kV Dourados 2	3° ATF 230/138 kV, 1 x 150 MVA 3Ф	2024
SE 230/138 kV Imbirussu	4° ATF 230/138 kV, 1 x 150 MVA 3Ф	2024
SE 230/138 kV Maracaju 2	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2025
SE 230/138 kV Iguatemi 2	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2025
SE 230/138 kV Campo Grande 2	1° e 2° Capacitor em Derivação 230 kV, 2 x 100 Mvar 3Ф	2027
SE 230/138 kV Rio Brilhante	1° Capacitor em Derivação 230 kV, 1 x 100 Mvar 3Ф	2027
SE 230/138 kV Campo Grande 3	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2027

3.3.2 Expansão no Estado do Paraná

As tabelas a seguir apresentam o conjunto de empreendimentos de transmissão localizados no estado do Paraná e que está representado nos casos base do Plano Decenal 2029. Esse conjunto de obras contempla um quantitativo expressivo de instalações de transmissão recomendado nos seguintes estudos de planejamento:

- → EPE-DEE-RE-13/2013-rev0 Estudo de Atendimento ao Estado do Paraná Região Oeste e Sudoeste, abril de 2013. Além de solucionar os problemas de atendimento ao mercado local, esse estudo avaliou a expansão do sistema levando-se em consideração a integração de empreendimentos de geração da região, em especial, pequenas centrais hidrelétricas. Dentre as principais recomendações do estudo destaca-se a implantação das subestações 230/138kV Medianeira e Realeza Sul Sul.
- → EPE-DEE-RE-32/2015-rev0 Estudo de Atendimento Elétrico ao Estado do Paraná: Regiões Norte e Noroeste, fevereiro de 2015. Esse estudo recomendou a implantação da nova SE 525/230 kV Sarandi, cuja licitação ocorreu no Leilão de Transmissão 005/2016, com previsão de entrada em operação até agosto de 2022.
- → EPE-DEE-RE-133/2015-rev2 Estudo de Atendimento ao Estado do Paraná: Região Centro-sul, maio de 2017. Esse estudo recomendou um quantitativo expressivo de instalações de transmissão em 525 kV e em 230 kV, dentre elas, a nova SE 525/230 kV Ponta Grossa e a LT 525 kV Ivaiporã Ponta Grossa Bateias C1 e C2. Essas obras foram licitadas no Leilão de Transmissão 002/2017, com previsão de entrada em operação até março de 2023.
- → EPE-DEE-RE-006/2018-rev0 Estudo de Atendimento Elétrico ao Estado do Paraná: Região Metropolitana de Curitiba e Litoral – Volume 1. Esse estudo recomendou um conjunto de ampliações em instalações de fronteira existentes e recapacitações linhas de transmissão da Rede Básica que atendem à região metropolitana de Curitiba. Nesse primeiro volume não estão contempladas as recomendações estruturantes associadas às novas instalações de Rede Básica ou de fronteira, que serão apresentadas no volume 2 desse estudo.

Ainda sobre os estudos de planejamento finalizados, é importante destacar a emissão do Relatório *EPE-DEE-RE-039/2019-rev0 - Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Metropolitana de Porto Alegre – Volume 2.* Esse estudo contemplou um conjunto significativo de ampliações em instalações de Rede Básica, em especial um conjunto de linhas de transmissão que fortalece a malha de 525kV da Região Sul e se estende desde a região metropolitana de Porto Alegre até o estado do Paraná. Dentre as principais obras com influência no desempenho elétrico do sistema que atende o estado do Paraná, destacam-se: (i) LT 525kV Abdon Batista 2 – Ponta

Grossa e (ii) Abdon Batista 2 – Segredo. Esse conjunto de obras, todavia, ainda não foi representado nos casos base de fluxo de potência do Plano Decenal 2029.

Tabela 5 - Expansões previstas para o estado do Paraná - Linhas de Transmissão

	Emilias de Transmiss	DATA
	DESCRIÇÃO DA OBRA	PREVISTA
	Circuito Simples 525 kV, 6x795 MCM (Tern), 170 km	2021
	Circuito Simples 525 kV, 6x795 MCM (Tern), 170 km	2021
LT 525 kV Ivaiporã - Ponta Grossa, C1 e C2 (CS)	1º e 2º Reator de Linha Fixo 525 kV, (6 + 1R) x 50 MVar 1Φ // SE Ivaiporã	2021
	1º e 2º Reator de Linha Fixo 525 kV, (6 + 1R) x 50 MVar 1Φ // SE Ponta Grossa	2021
LT 525 kV Ponta Grossa -	Circuito Simples 525 kV, 6x795 MCM (Tern), 95 km	2021
Bateias, C1 e C2 (CS)	Circuito Simples 525 kV, 6x795 MCM (Tern), 95 km	2021
LT 230 kV Ponta Grossa - São Mateus do Sul, C1	Circuito Simples 230 kV, 1 x 954.0 MCM (RAIL), 89 km	2021
LT 230 kV Ponta Grossa - Ponta Grossa Sul, C1	Circuito Simples 230 kV, 1 x 954.0 MCM (RAIL), 32 km	2021
LT 230 kV União da Vitória Norte - São Mateus do Sul, C1	Circuito Simples 230 kV, 1 x 1113.0 MCM (BLUEJAY), 98 km	2021
LT 230 kV Areia - Guarapuava Oeste, C1	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 68 km	2021
LT 230 kV Guaíra - Umuarama Sul, C2	Circuito Simples 230 kV, 1 x 795.0 MCM (DRAKE), 105 km	2021
LT 230 kV Irati Norte - Ponta Grossa, C2	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 65 km	2021
LT 230 kV Baixo Iguaçu - Realeza Sul, C1	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 35 km	2021
LT 230 kV Areia - União da Vitória Norte, C1	Circuito Simples 230 kV, 1 x 1113.0 MCM (BLUEJAY), 52.2 km	2021
LT 525 kV Curitiba Leste - Blumenau, C1	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 158 km	2021
SECC LT 230 kV Klacel -	Circuito Simples 230 kV, 1x876,3 MCM (Al liga 1120), 14 km	2021
Ponta Grossa, C1, na SE Castro Norte	Circuito Simples 230 kV, 1x876,3 MCM (Al liga 1120), 14 km	2021
SECC LT 230 kV Klacel -	Circuito Simples 230 kV, 1x876,3 MCM (Al liga 1120), 18 km	2021
Ponta Grossa Norte, C1, na SE Ponta Grossa	Circuito Simples 230 kV, 1x876,3 MCM (Al liga 1120), 18 km	2021
SECC LT 230 kV Areia - Ponta	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 2,5 km	2021
Grossa Norte, C1, na SE Ponta Grossa	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 2,5 km	2021
SECC LT 230 kV Areia - Ponta	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 62 km	2021
Grossa, C1, na SE Guarapuava Oeste	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 62 km	2021
SECC LT 230 kV Areia - Ponta	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 1,0 km	2021
Grossa, C1, na SE Irati Norte	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 1,0 km	2021
SECC LT 230 kV Londrina-ESU	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 4 km	2021
- Apucarana, C1, na SE Londrina Sul	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 4 km	2021
LT 525 kV Guaíra - Foz do Iguaçu, C1 e C2 (CD)	Circuito Duplo 525 kV, 4 x 954 MCM (Rail), 170 km	2022
	Circuito Duplo 525 kV, 4 x 954 MCM (Rail), 258 km	2022
LT 525 kV Guaíra - Sarandi,	Reator de Linha Fixo 525 kV, (6+1R) x 33,3 Mvar 1Φ // SE Guaíra	2022
C1 e C2 (CD)	Reator de Linha Manobrável 525 kV, (6+1R) x 33,3 Mvar 1Φ // SE Sarandi	2022
LT 525 kV Guaíra - Cascavel Oeste, C1	Energização, Circuito Simples 525 kV, 4 x 636 MCM (Grosbeak), 126 km	2022

	DESCRIÇÃO DA OBRA	DATA PREVISTA
LT 230 kV Londrina-ESU - Ibiporã, C1 e C2 (CD)	Recapacitação, Circuito Duplo 230 kV, 1x900 MCM (Al Liga 1120), 20,3 km	2022
LT 230 kV Figueira - Jaguariaíva, C1	Recapacitação, Circuito Simples 230 kV, 1x636 MCM (T-ACSR Rook), 82,7 km	2022
LT 230 kV Sarandi - Paranavaí Norte, C1 e C2 (CD)	Circuito Duplo 230 kV, 1 x 795 MCM (Drake), 86 km	2022
LT 525 kV Londrina-ESU - Sarandi, C1 e C2 (CD)	Circuito Duplo 525 kV, 4 x 954 MCM (Rail), 74 km	2022
LT 230 kV Campo Comprido - Santa Quitéria, C1	Recapacitação, Circuito Simples 230 kV, 1 x 636 MCM (T-ACSR Rook), 6 km	2022
LT 230 kV Pilarzinho - Santa Mônica, C1	Recapacitação, Circuito Simples 230 kV, 1 x 636 MCM (T-ACSR Rook), 27,9 km	2022
LT 230 kV Bateias - Pilarzinho, C1	Recapacitação, Circuito Simples 230 kV, 1 x 636 MCM (T-ACSR Rook), 29 km	2022
LT 230 kV Londrina - Apucarana, C2	Recapacitação, Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 46 km	2023
	Circuito Simples 525 kV, 4 x 954.0 MCM (RAIL), 292.4 km	2024
LT 525 kV Joinville Sul - Areia, C1	1º Reator de Linha Fixo 525 kV, (3 + 1R) x 50 MVar 1Φ // SE Joinville Sul	2024
	1° Reator de Linha Fixo 525 kV, (3 + 1R) x 50 MVar 1Φ // SE Areia	2024
SECC LT 230 kV Londrina-ESU	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 0,7 km	2025
- Maringá, C1, na SE Sarandi	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 0,7 km	2025
LT 525 kV Cascavel Oeste - Segredo, C1	Circuito Simples 525 kV, 4 x 954 MCM (RAIL), 183,52 km	2026
LT FOE IV Abdes Deticte 2	Circuito Duplo 525 kV, 4 x 954 MCM (RAIL), 297,09 km	2026
LT 525 kV Abdon Batista 2 - Ponta Grossa, C1 e C2 (CD)	Reator de Linha Fixo 525 kV, (6+1R) x 25 Mvar 10 // SE Abdon Batista 2	2026
Tonta Grossa, CT C CZ (CD)	Reator de Linha Fixo 525 kV, (6+1R) x 25 Mvar 10 // SE Abdon Batista 2	2026
LT 525 kV Abdon Batista 2 - Segredo, C1	Circuito Simples 525 kV, 4 x 954 MCM (RAIL), 225,6 km	2026
SECC LT 230 kV Curitiba - Joinville Norte, C1 (CD), na SE Joinville Norte 2	Circuito Duplo 230 kV, 1 x 636.0 MCM (GROSBEAK), 2 km	2026
SECC LT 230 kV Curitiba - Joinville Norte, C2 (CD), na SE Joinville Norte 2	Circuito Duplo 230 kV, 1 x 636.0 MCM (GROSBEAK), 2 km	2026

Tabela 6 – Expansões previstas para o estado do Paraná – Subestações

	DESCRIÇÃO DA OBRA	DATA PREVISTA
CE F3F/330 kV Ponta Crossa	1°, 2° e 3° ATF 525/230 kV, (9+1R) x 224 MVA 1Φ	2021
SE 525/230 kV Ponta Grossa	1° e 2° Reator de Barra 525 kV, (6+1R) x 50 Mvar 1Φ	2021
SE 230/138 kV Castro Norte	1° e 2° ATF 230/138 kV, (6+1R) x 50 MVA 1Φ	2021
SE 230/138 kV União da Vitória Norte	1° e 2° ATF 230/138 kV, (6+1R) x 50 MVA 1Ф	2021
SE 230/138 kV Guarapuava	1°, 2° e 3° ATF 230/138 kV, (9+1R) x 50 MVA 1Ф	2021
Oeste	1° Reator de Barra 230 kV, 1 x 50 Mvar 3Ф	2021
SE 230/138 kV Irati Norte	1° e 2° ATF 230/138 kV, (6+1R) x 50 MVA 1Φ	2021
SE 525/230 kV Londrina-ESU	1° e 2° Reator de Barra 525 kV, (6+1R) x 50 Mvar 1Φ	2021
SE 230/34.5/13.8 kV São Mateus do Sul	Subst. 1° e 2° TF 230/34,5/13,8 kV, 2 x 50 MVA 3Φ	2021
SE 230/138 kV Ponta Grossa Sul	Subst. 1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Φ	2021
SE 230/138 kV Pato Branco	Subst. 1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Φ	2021
SE 230/138 kV Realeza Sul	2° ATF 230/138 kV, 1 x 150 MVA 3Ф	2021
SE 230/138 kV Londrina Sul	1° ATF 230/138 kV, (3 + 1R) x 50 MVA 1Φ	2021

	DESCRIÇÃO DA OBRA	DATA PREVISTA
SE 230/138 kV Paranavaí Norte	1° e 2° ATF 230/138 kV, (6 + 1R) x 50 MVA 1Φ	2022
SE 525/230/138 kV Sarandi	3º ATF 230/138 kV, 1 x 150 MVA 3Ф	2022
3L 323/230/138 KV Salaliul	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Φ	2022
CE 220/129 M/ Cupira	Subst. 1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Φ	2022
SE 230/138 kV Guaíra	3º ATF 230/138 kV, 1 x 225 MVA 3Ф	2022
CE E3E/330/130 IA/ Cuping	1° Reator de Barra 525 kV, (3+1R) x 50 Mvar 1Φ	2022
SE 525/230/138 kV Guaíra	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Ф	2022
SE 525/230/138 kV Sarandi	1° e 2° Reator de Barra 525 kV, (6+1R) x 50 Mvar 1Φ	2022
SE 230/138 kV Ponta Grossa Norte	Subst. 1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Ф	2023
SE 230/138 kV Campo Mourão	1° Capacitor em Derivação 230 kV, 1 x 100 Mvar 3Ф	2023
SE 230/138 kV Umuarama Sul	3° ATF 230/138 kV, 1 x 150 MVA 3Ф	2023
CE E3E/330/130 ld/ Carandi	3° ATF 525/230 kV, 3 x 224 MVA 1Ф	2023
SE 525/230/138 kV Sarandi	4° ATF 230/138 kV, 1 x 150 MVA 3Ф	2023
SE 230/138 kV Posto Fiscal	3° ATF 230/138 kV, 1 x 150 MVA 3Ф	2023
SE 525/230 kV Curitiba Leste	2° ATF 525/230 kV, 3 x 224 MVA 1Φ	2023
SE 230/138/13.8 kV Campo do Assobio	Substituição dos ATFs 230/138 kV por unidades de 150 MVA (provenientes da SE Ponta Grossa Norte)	2023
SE 525/230/138 kV Bateias	3° ATF 230/138 kV, 1 x 150 MVA 3Ф	2023
SE 230/69/13.8 kV CIC	3° TF 230/13,8 kV, 1 x 50 MVA 3Ф	2023
SE 230/69/13.8 kV Uberaba	3° TF 230/13,8 kV, 1 x 50 MVA 3Ф	2023

3.3.3 Expansão no Estado de Santa Catarina

As tabelas a seguir apresentam o conjunto de empreendimentos de transmissão localizados no estado de Santa Catarina e que está representado nos casos base do Plano Decenal 2029. Esse conjunto de obras contempla um quantitativo expressivo de instalações de transmissão recomendado nos seguintes estudos de planejamento:

- → EPE-DEE-DEA-RE-09/2013-rev1 Estudo de Atendimento Elétrico ao Estado de Santa Catarina: Regiões Sul e Extremo Sul, setembro de 2017. Esse estudo visou solucionar os problemas de subtensões e sobrecargas previstos no sistema elétrico local, bem como eliminar a dependência da região em relação ao despacho de geração da UTE Jorge Lacerda (carvão). Esse estudo recomendou a implantação de um número expressivo de instalações em 525 kV na região, licitadas no Leilão de Transmissão 005/2016, dentre as quais se destaca a SE 525/230 kV Siderópolis 2.
- → EPE-DEE-RE-86/2014-rev2 Estudo de Atendimento Elétrico ao Estado de Santa Catarina: Região de Florianópolis, abril de 2016. Esse estudo visou garantir o suprimento de energia elétrica da região Metropolitana de Florianópolis frente ao esgotamento do sistema elétrico responsável pelo atendimento à ilha de Florianópolis, que é suprida por apenas uma única subestação de fronteira. Dentre as principais recomendações desse estudo destacamse a SE 230/138 kV Ratones e a LT 230 kV Biguaçu Ratones C1 e C2, ambas licitadas no Leilão de Transmissão 002/2018.
- → EPE-DEE-RE-132/2015-rev2 Estudo de Atendimento ao Estado de Santa Catarina: Regiões Norte e Vale do Itajaí, janeiro de 2018. Esse estudo objetivou solucionar problemas de subtensões e sobrecargas esperados no sistema elétrico local. Esse estudo recomendou a implantação de um número expressivo de instalações de transmissão em 525 kV e 230 kV na região, dentre elas, as novas SE 525/230/138 kV Joinville Sul, SE 525/230/138 kV Itajaí e SE 525 kV Gaspar 2. Todas essas instalações foram licitadas no último leilão de 2018.
- → EPE-DEE-RE-49/2017-rev0 Estudo de Atendimento Elétrico ao Estado de Santa Catarina: Região Oeste, agosto de 2017. Esse estudo objetivou solucionar problemas de tensão e de carregamento previstos em diversas instalações de transmissão do sistema da região oeste do estado. Esse estudo recomendou a implantação de uma nova fonte 525/230 kV na região, a partir do estabelecimento de um pátio de 230 kV na SE 525 kV Itá, além da implantação das subestações 230/138 kV Chapecoense, Concórdia, Descanso e Videira Sul.

Ainda sobre os estudos de planejamento finalizados, é importante destacar a emissão do Relatório *EPE-DEE-RE-039/2019-rev0 - Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Metropolitana de Porto Alegre – Volume 2*. Esse estudo contemplou um conjunto significativo de ampliações em instalações de Rede Básica, em especial um conjunto de linhas de transmissão que fortalece a malha de 525kV da Região Sul e se estende desde a região metropolitana de Porto Alegre até o estado do Paraná. Dentre as principais obras com influência no desempenho elétrico do sistema que atende o estado de Santa Catarina, destacam-se: (i) SE 525kV Abdon Batista 2; (ii) LT 525kV Porto Alegre Sul – Abdon Batista 2; (iii) LT 525kV Abdon Batista 2 – Ponta Grossa; (iv) Abdon Batista – Abdon Batista 2; e (v) Abdon Batista 2 – Segredo. Esse conjunto de obras, todavia, ainda não foi representado nos casos base de fluxo de potência do Plano Decenal 2029.

Tabela 7 - Expansões previstas para o estado de Santa Catarina - Linhas de Transmissão

	DESCRIÇÃO DA OBRA	DATA
		PREVISTA
LT 230 kV Foz do Chapecó - Pinhalzinho 2, C2	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 40 km	2020
LT 525 kV Abdon Batista - Campos Novos, C2	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 40 km	2020
LT 230 kV Siderópolis 2 - Siderópolis, C1 e C2 (CD)	Circuito Duplo 230 kV, 2 x 795 MCM (Drake), 1 km	2020
LT 230 kV Siderópolis 2 -	Circuito Simples 230 kV, 1 x 954 MCM (Rail), 20 km	2020
Forquilhinha, C1	Circuito Simples 230 kV, 1 x 954.0 MCM (RAIL), 20 km	2020
LT 230 kV Torres 2 - Forquilhinha, C1	Circuito Simples 230 kV, 1 x 715.5 MCM (Starling), 70 km	2020
SECC LT 230 kV Jorge	Circuito Simples 230 kV, 1 x 954 MCM (Rail), 8,5 km	2020
Lacerda - Siderópolis, C3, na SE Tubarão Sul	Circuito Simples 230 kV, 1 x 954 MCM (Rail), 8,5 km	2020
	Circuito Duplo 230 kV, 1 x 800.0 MCM, 13 km (trecho submarino - C1 e C2 (CD))	2021
	Circuito Duplo 230 kV, 1 x 1600.0 MCM, 4,5 km (trecho subterrâneo - C1 e C2 (CD))	2021
LT 230 kV Biguaçu - Ratones, C1 e C2 (CS)	Circuito Simples 230 kV, 1 x 900.0 MCM (RUDDY), 10 km (trecho aéreo - C1)	2021
	Circuito Simples 230 kV, 1 x 900.0 MCM (RUDDY), 10 km (trecho aéreo - C2)	2021
	Custo Fundiário	2021
LT 525 kV Curitiba Leste - Blumenau, C1	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 158 km	2021
	Circuito Duplo 525 kV, 4 x 954 MCM (Rail), 250 km	2022
LT 525 kV Abdon Batista -	Reator de Linha Fixo 525 kV, 8 x 75 Mvar 1Φ // SE Abdon Batista	2022
Siderópolis 2, C1 e C2 (CD)	Reator de Linha Manobrável 525 kV, 8 x 50 Mvar 1Φ // SE Siderópolis 2	2022
	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 150 km	2022
LT 525 kV Biguaçu -	Reator de Linha Manobrável 525 kV, (3+1R) x 25 Mvar 1Φ // SE Biguaçu	2022
Siderópolis 2, C1	Reator de Linha Manobrável 525 kV, (3+1R) x 25 Mvar 1Φ // SE Siderópolis 2	2022
LT 230 kV Abdon Batista - Videira, C1 e C2 (CD)	Circuito Duplo 230 kV, 2 x 477 MCM (HAWK), 63,4 km	2023
LT 230 kV Abdon Batista - Barra Grande, C3	Circuito Simples 230 kV, 1 x 1113 MCM (BLUEJAY), 26,7 km	2023

	DESCRIÇÃO DA OBRA	DATA PREVISTA
LT 230 kV Itá - Pinhalzinho 2, C1 e C2 (CD)	Circuito Duplo 230 kV, 2 x 477 MCM (HAWK), 93,3 km	2024
LT 230 kV Itá - Xanxerê, C1 e C2 (CD)	Circuito Duplo 230 kV, 2 x 477 MCM (HAWK), 51,7 km	2024
LT 230 kV Itajaí - Itajaí 2, C1	Circuito Simples 230 kV, 2 x 636.0 MCM (GROSBEAK), 7.1 km	2024
e C2 (CS)	Circuito Simples 230 kV, 2 x 636.0 MCM (GROSBEAK), 7.1 km	2024
LT 230 kV Joinville Sul - Joinville Norte, C1	Recapacitação, Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak-T), 18 km	2024
LT 230 kV Joinville Sul - Joinville, C1	Recapacitação, Circuito Simples 230 kV, 1 x 715 MCM (Starling-T), 12 km	2024
LT 230 kV Indaial - Gaspar 2, C1 e C2 (CD)	Circuito Duplo 230 kV, 1 x 1113 MCM (BLUEJAY), 57 km	2024
LT 230 kV Rio do Sul - Indaial, C1 e C2 (CD)	Circuito Duplo 230 kV, 1 x 1113 MCM (BLUEJAY), 51 km	2024
	Circuito Simples 525 kV, 4 x 954.0 MCM (RAIL), 292.4 km	2024
LT 525 kV Joinville Sul - Areia, C1	1º Reator de Linha Fixo 525 kV, (3 + 1R) x 50 MVar 1Φ // SE Joinville Sul	2024
	1º Reator de Linha Fixo 525 kV, (3 + 1R) x 50 MVar 1Φ // SE Areia	2024
	ESTUDO DE VIABILIDADE + DESPESAS DE VIAGEM	2024
	PROJETO BASICO	2024
	PROJETO EXECUTIVO	2024
LT 525 kV Itá - Santo Ângelo,	CUSTO EQUIPAMENTOS (HGIS/SFV) FOB PORTO SANTOS	2024
C1 e C2 (CS)	ADMINISTRAÇÃO/MOBILIZAÇÃO/DESMOBILIZAÇÃO	2024
	CUSTO MATERIAIS	2024
	CUSTO DE OBRA CIVIL	2024
	CUSTO MONTAGEM ELETROMECANICA	2024
LT 525 kV Joinville Sul - Itajaí 2, C1	Circuito Simples 525 kV, 4 x 954.0 MCM (RAIL), 81.5 km	2024
LT 525 kV Itajaí 2 - Biguaçu, C1	Circuito Simples 525 kV, 4 x 954.0 MCM (RAIL), 63.4 km	2024
LT 230 kV Joinville Sul - Joinville, C2	Recapacitação, Circuito Simples 230 kV, 1 x 715 MCM (Starling-T), 0.2 km	2024
LT 230 kV Siderópolis 2 - Forquilhinha, C2	Circuito Simples 230 kV, 1 x 954.0 MCM (RAIL), 28 km	2024
LT 525 kV Capivari do Sul -	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 249 km	2024
Siderópolis 2, C1	Reator de Linha Fixo 525 kV, (3+1R) x 33,3 Mvar 1Φ // SE Siderópolis 2	2024
SECC LT 525 kV Blumenau - Curitiba, C1 (CD), na SE Joinville Sul	Circuito Duplo 525 kV, 4 x 636 MCM (Grosbeak), 39 km	2024
SECC LT 525 kV Blumenau - Curitiba Leste, C1 (CD), na SE Joinville Sul	Circuito Duplo 525 kV, 4 x 636 MCM (Grosbeak), 43 km	2024
SECC LT 525 kV Blumenau - Biguaçu, C1 (CD), na SE Gaspar 2	Circuito Duplo 525 kV, 4 x 954.0 MCM (RAIL), 7.1 km	2024
SECC LT 230 kV Blumenau - Joinville Norte, C1 (CD), na SE Joinville Sul	Circuito Duplo 230 kV, 2 x 795.0 MCM (TERN), 5.5 km	2024
SECC LT 230 kV Blumenau - Joinville, C1 (CD), na SE Joinville Sul	Circuito Duplo 230 kV, 2 x 795.0 MCM (TERN), 5.5 km	2024
SECC LT 230 kV Blumenau - Joinville Norte, C1 (CD), na SE Jaraguá do Sul	Circuito Duplo 230 kV, 2 x 795.0 MCM (TERN), 38 km	2024
SECC LT 230 kV Blumenau - Joinville, C1 (CD), na SE Jaraguá do Sul	Circuito Duplo 230 kV, 2 x 795.0 MCM (TERN), 38 km	2024

	DESCRIÇÃO DA OBRA	DATA PREVISTA					
SECC LT 525 kV Blumenau -							
Curitiba, C1 (CD), na SE Gaspar 2	Circuito Duplo 525 kV, 4 x 636 MCM (Grosbeak), 23 km						
SECC LT 230 kV Joinville - Joinville Norte, C1 (CD), na SE Joinville Sul	Circuito Duplo 230 kV, 2 x 795.0 MCM (TERN), 13.3 km						
SECC LT 525 kV Itá - Caxias,	Circuito Simples 525 kV, 4 x 954 MCM (RAIL), 11 km						
C1, na SE Caxias Norte	Circuito Simples 525 kV, 4 x 954 MCM (RAIL), 11 km	2025					
SECC LT 525 kV Campos	Circuito Simples 525 kV, 4 x 636 MCM (GROSBEAK), 13 km	2025					
Novos - Caxias, C1, na SE Caxias Norte	Circuito Simples 525 kV, 4 x 636 MCM (GROSBEAK), 13 km	2025					
	Circuito Duplo 525 kV, 4 x 954 MCM (RAIL), 297,09 km	2026					
LT 525 kV Abdon Batista 2 -	Reator de Linha Fixo 525 kV, (6+1R) x 25 Mvar 1Φ // SE Abdon Batista 2	2026					
Ponta Grossa, C1 e C2 (CD)	Reator de Linha Fixo 525 kV, (6+1R) x 25 Mvar 1Φ // SE Abdon Batista 2	2026					
LT 525 kV Abdon Batista - Abdon Batista 2, C1 e C2 (CD)	Circuito Duplo 525 kV, 4 x 954 MCM (RAIL), 4,4 km	2026					
LT 525 kV Abdon Batista 2 - Segredo, C1	Circuito Simples 525 kV, 4 x 954 MCM (RAIL), 225,6 km	2026					
LT 230 kV Lajeado Grande 2 - Forquilhinha, C2	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 111 km	2026					
LT 230 kV Lajeado Grande 2 - Forquilhinha, C3	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 111 km	2026					
SECC LT 230 kV Biguaçu -	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 9,6 km						
Gaspar 2, C1, na SE São José	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 9,6 km	2026					
SECC LT 230 kV Foz do Chapecó - Xanxerê, C1 (CD), na SE Chapecoense	Circuito Duplo 230 kV, 2 x 636.0 MCM (GROSBEAK), 3.3 km						
SECC LT 230 kV Foz do Chapecó - Xanxerê, C2 (CD), na SE Chapecoense	Circuito Duplo 230 kV, 2 x 636 MCM (GROSBEAK), 3,3 km	2026					
LT 230 kV Campos Novos - Concórdia, C1	Circuito Simples 230 kV, 2 x 477 MCM (HAWK), 61,8 km	2027					
LT 230 kV Gaspar 2 - Indaial, C3	Circuito Simples 230 kV, 1 x 1113 MCM (BLUEJAY), 57 km	2027					
LT 230 kV Itá - Concórdia, C1	Circuito Simples 230 kV, 2 x 477 MCM (HAWK), 55 km	2027					
LT 230 kV Xanxerê - Pinhalzinho 2, C1	Circuito Simples 230 kV, 2 x 477 MCM (HAWK), 64,7 km	2027					
SECC LT 230 kV Blumenau - Itajaí, C2 (CD), na SE Ilhota 2	Circuito Duplo 230 kV, 1 x 636 MCM (GROSBEAK), 5 km	2027					
SECC LT 230 kV Foz do Chapecó - Pinhalzinho 2, C2 (CD), na SE Descanso	Circuito Duplo 230 kV, 1 x 954 MCM (RAIL), 47 km	2027					
SECC LT 230 kV Blumenau - Itajaí, C1 (CD), na SE Ilhota 2	Circuito Duplo 230 kV, 1 x 636.0 MCM (GROSBEAK), 5 km	2027					
SECC LT 230 kV Foz do Chapecó - Pinhalzinho 2, C1 (CD), na SE Descanso	Circuito Duplo 230 kV, 1 x 954.0 MCM (RAIL), 47 km	2027					

Tabela 8 – Expansões previstas para o estado de Santa Catarina – Subestações

DESCRIÇÃO DA OBRA			
SE 230/138 kV Pinhalzinho 2	2020		
SE 525/230/138 kV Biguaçu	Compensador Estático 525 kV, 1 x (-100/+300) Mvar	2020	
SE 525/230 kV Siderópolis 2	1º Reator de Linha 525 kV, (3 + 1R) x 50 MVar 1Φ	2020	
	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Φ	2020	

DESCRIÇÃO DA OBRA				
	1° e 2° ATF 230/69 kV, 2 x 150 MVA 3Ф	2020		
SE 230/138 kV Tubarão Sul	1° ATF 230/138 kV, 1 x 150 MVA 3Ф	2020		
	2° ATF 230/138 kV, 1 x 150 MVA 3Ф	2020		
SE 230/138 kV Desterro	1° e 2° Reator de Barra 230 kV, 2 x 50 Mvar 3Ф	2020		
CE 220/120 M/ Datanes	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2021		
SE 230/138 kV Ratones	1° e 2° Reator de Barra 230 kV, 2 x 50 Mvar 3Ф	2021		
SE 230/138 kV Palhoça	Subst. 1°, 2° e 3° ATF 230/138 kV, 3 x 150 MVA 3Ф	2021		
SE 230/138/69 kV Joinville	Subst. 1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Φ (atual: 75 MVA e 100 MVA 3Φ)	2022		
, ,	Subst. 1° TF 230/69 kV, 1 x 150 MVA 3Φ (atual: 100 MVA 3Φ)	2022		
SE 230/138 kV Pinhalzinho 2	4° ATF 230/138 kV, 1 x 150 MVA 3Ф	2023		
SE 230/138 kV Foz do Chapecó	4° ATF 230/138 kV, 1 x 50 MVA 3Ф	2023		
SE 230/138 kV Videira	4° ATF 230/138 kV, 1 x 150 MVA 3Ф	2023		
SE 230/138 kV Itajaí	1° Capacitor em Derivação 230 kV, 1 x 100 Mvar 3Ф	2023		
SE 525/230/138 kV Blumenau	1° Reator de Barra 525 kV, (3+1R) x 50 Mvar 1Φ	2023		
SE 525/230/138 kV Biguaçu	2° Capacitor em Derivação 230 kV, 1 x 100 Mvar 3Ф	2023		
CE E3E/330 IA/ Cidenán die 3	1° Capacitor em Derivação 230 kV, 1 x 100 Mvar 3Ф	2023		
SE 525/230 kV Siderópolis 2	3° ATF 525/230 kV, 3 x 224 MVA 1Ф	2023		
SE 230/138 kV Rio do Sul	2° Capacitor em Derivação 230 kV, 1 x 50 Mvar 3Ф	2023		
GE 535 /330 /430 LV 3 : '''	1°, 2° e 3° ATF 525/230 kV, (9+1R) x 224 MVA 1Ф	2024		
SE 525/230/138 kV Joinville	1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Ф	2024		
Sul	1° Reator de Barra 525 kV, (3+1R) x 50 Mvar 1Φ	2024		
SE 230/138 kV Jaraguá do Sul	1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Ф	2024		
	1° e 2° ATF 525/230 kV, (6+1R) x 224 MVA 1Ф	2024		
SE 525/230/138 kV Gaspar 2	4° ATF 230/138 kV, 1 x 150 MVA 3Ф	2024		
	1º Reator de Barra 525 kV, (3 + 1R) x 50 MVar 1Φ	2024		
SE 230/138 kV Indaial	1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Ф	2024		
	1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Ф	2024		
CE E3E/330/130 IA/ Thair's	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Ф	2024		
SE 525/230/138 kV Itajaí 2	1º e 2º Reator de Barra 525 kV, (6 + 1R) x 50 MVar 1Ф	2024		
	3° ATF 230/138 kV, 1 x 225 MVA 3Ф	2024		
SE 230/138 kV Rio do Sul	4° ATF 230/138 kV, 1 x 150 MVA 3Φ	2024		
SE 525/230 kV Itá	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Ф	2024		
SE 230/138 kV Joinville Norte 2	1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Ф	2026		
SE 230/138 kV Chapecoense	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2026		
SE 230/138 kV Ratones	3° ATF 230/138 kV, 1 x 150 MVA 3Ф	2026		
SE 230/138 kV São José	1° ATF 230/138 kV, 1 x 150 MVA 3Ф	2026		
SE 525 kV Abdon Batista 2	1° e 2° Reator de Barra 525 kV, (6+1R) x 50 Mvar 1Φ	2026		
SE 525/230/138 kV Joinville Sul	3° ATF 230/138 kV, 1 x 225 MVA 3Ф	2027		
SE 230/138 kV Jaraguá do Sul	3° ATF 230/138 kV, 1 x 225 MVA 3Ф	2027		
SE 230/138 kV Indaial	3° ATF 230/138 kV, 1 x 225 MVA 3Ф	2027		
SE 525/230/138 kV Itajaí 2	3° ATF 525/230 kV, 3 x 224 MVA 1Ф	2027		
SE 230/138 kV Ilhota 2	1° e 2° ATF 230/138 kV, 2 x 225 MVA 3Ф	2027		
SE 230/138 kV Descanso	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2027		
SE 230/138 kV Concórdia	1°, 2° e 3° ATF 230/138 kV, 3 x 150 MVA 3Ф	2027		
	·	1		

3.3.4 Expansão no Estado do Rio Grande do Sul

As tabelas a seguir apresentam o conjunto de empreendimentos de transmissão localizados no estado do Rio Grande do Sul e que está representado nos casos base do Plano Decenal 2029 a exceção das obras recomendadas no estudo EPE-DEE-RE-039/2019-rev0. Esse conjunto de obras contempla um quantitativo expressivo de instalações de transmissão recomendado nos seguintes estudos de planejamento:

- → EPE-DEE-RE-70/2010-rev1 Estudo de Suprimento Elétrico ao Estado do Rio Grande do Sul Região Sul, outubro de 2010. Esse estudo avaliou as condições de entendimento à região sul do estado. Dentre as principais recomendações que ainda contam da lista de obras desse relatório, destaca-se a ampliação da transformação das subestações Quinta 230/69kV e Presidente Médici 230/138kV.
- → EPE-DEE-RE-030/2014-rev0 Estudo de Atendimento Elétrico ao Litoral Norte do Rio Grande do Sul, janeiro de 2014. Esse estudo objetivou solucionar problemas de subtensões e sobrecargas registrados no sistema elétrico local durante os períodos de verão, quando ocorrem picos de carga. Esse estudo recomendou a implantação de uma nova subestação de fronteira, a SE 230/69 kV Torres 2, licitada no Leilão de Transmissão 013/2015 1ª Etapa.
- → EPE-DEE-DEA-RE-006/2014-rev3 Estudo Prospectivo para Avaliação da Integração do Potencial Eólico do Estado do Rio Grande do Sul, setembro de 2014. Esse estudo avaliou toda a malha de transmissão do estado do Rio Grande do Sul com o objetivo de preparar o sistema local para a integração dos seus potenciais eólico e térmico (gás e carvão). Esse estudo recomendou um número expressivo de instalações de transmissão em 525 kV e 230 kV na região, as quais foram licitadas originalmente no Leilão de Transmissão 004/2014 e, mais recentemente, relicitadas no leilão 04/2018.
- → EPE-DEE-RE-056/2017-rev0 Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Serrana, setembro de 2017. Esse estudo de planejamento avaliou o desempenho elétrico da Região Serrana do estado e teve por objetivo solucionar sobrecargas esperadas em instalações de transmissão locais. As obras recomendadas no estudo deverão ser licitadas em 2019, possivelmente entrando em operação até o início de 2025. Dentre os principais empreendimentos recomendados nesse estudo está a subestação 525/230/138kV Caxias Norte.
- → EPE-DEE-RE-002/2017-rev0 Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região de Cruz Alta, maio de 2017. Esse estudo recomendou a implantação da nova SE 230/69 kV Cruz Alta 2 para o atendimento às cargas da distribuidora e permissionárias

locais. Essa subestação foi licitada no Leilão de Transmissão 002/2018, com previsão de entrada em operação até março de 2022.

→ EPE-DEE-RE-088/2018-rev0 - Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Metropolitana de Porto Alegre - Volume 1. Esse estudo recomendou a implantação de um conjunto de reforços nas instalações de Rede Básica e de fronteira que atendem à região metropolitana de Porto Alegre, à região carbonífera e à região do Vale dos Sinos. É importante destacar que nesse primeiro volume não estão contempladas as recomendações estruturantes associadas às novas instalações de Rede Básica, que serão apresentadas no Volume 2 desse estudo.

Ainda sobre os estudos de planejamento finalizados para o estado do Rio Grande do Sul, é importante destacar a emissão do Relatório *EPE-DEE-RE-039/2019-rev0 - Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Metropolitana de Porto Alegre – Volume 2.* Esse estudo complementou as recomendações do Volume 1 e contemplou um conjunto e significativo de ampliações em instalações de Rede Básica e de fronteira dentre as quais destacam-se: (i) SE 525/230/69kV Porto Alegre Sul; (ii) LT 525kV Porto Alegre Sul – Abdon Batista 2; LT 525kV Porto Alegre Sul – Capivari do Sul; (iii) LT 230kV Porto Alegre Sul – Porto Alegre 4 e (iv) Porto Alegre Sul – Restinga. Esse conjunto de obras, todavia, ainda não foi representado nos casos base de estudo do Plano Decenal 2029.

Tabela 9 - Expansões previstas para o estado do Rio Grande do Sul - Linhas de transmissão

DESCRIÇÃO DA OBRA			
LT 230 kV Campo Bom - Taquara, C1	Circuito Simples 230 kV, 1 x 715.5 MCM (Starling), 29 km	2020	
LT 230 kV Porto Alegre 9 - Nova Santa Rita, C1	Circuito Simples 230 kV, 2 x 636 MCM (Grosbeak), 27 km	2020	
LT 230 kV Presidente Médici - Candiota 2, C1	Recapacitação - Circuito Simples 230 kV, 2 x 636 MCM (Grosbeak), 10 km	2020	
LT 230 kV Torres 2 - Forquilhinha, C1	Circuito Simples 230 kV, 1 x 715.5 MCM (Starling), 70 km	2020	
LT 230 kV Torres 2 - Atlântida 2, C1	Circuito Simples 230 kV, 1 x 715.5 MCM (Starling), 60 km	2020	
LT 230 kV Candiota 2 - Bagé 2, C1	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 50 km	2020	
SECC LT 230 kV Nova Santa Rita - Itaúba, C1, na SE Candelária 2	Circuito Duplo 230 kV, 1 x 715.5 MCM (Starling), 12 km	2020	

DESCRIÇÃO DA OBRA					
LT 230 kV Porto Alegre 9 - Porto Alegre 8, C1	Circuito Simples 230 kV, 2 x 636 MCM (Grosbeak), 12 km	2021			
SECC LT 230 kV Ijuí 2 - Passo Real, C1, na SE Cruz Alta 2	Circuito Duplo 230 kV, 1 x 636 MCM (GROSBEAK), 1 km	2022			
	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 52 km	2023			
LT 525 kV Marmeleiro 2 -	Reator de Linha Fixo 525 kV, 3 x 16,6 Mvar 1Φ // SE Marmeleiro 2	2023			
Santa Vitória do Palmar, C2	Reator de Linha Fixo 525 kV, 3 x 16,6 Mvar 1Φ // SE Santa Vitória do Palmar	2023			
LT F2F Id/ Poyo Noyo	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 152 km	2023			
LT 525 kV Povo Novo - Marmeleiro 2, C2	Reator de Linha Manobrável 525 kV, 3 x 16,7 Mvar 1Φ // SE Marmeleiro 2	2023			
	Reator de Linha Fixo 525 kV, 3 x 33,3 Mvar 1Φ // SE Povo Novo	2023			
LT 525 kV Nova Santa Rita - Guaíba 3, C2	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 36 km	2023			
LT 525 kV Gravataí - Guaíba 3, C1	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 120 km	2023			
LT 525 kV Gravataí - Capivari do Sul, C1	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 80 km	2023			
LT 525 kV Guaíba 3 - Capivari	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 168 km	2023			
do Sul, C1	Reator de Linha Fixo 525 kV, (3+1R) x 33,3 Mvar 1Φ // SE Capivari do Sul	2023			
LT 230 kV Guaíba 3 - Guaíba 2, C1	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 5 km	2023			
LT 230 kV Guaíba 3 - Guaíba 2, C2	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 5 km	2023			
LT 230 kV Viamão 3 - Capivari do Sul, C1	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 60 km				
LT 230 kV Osório 3 - Gravataí 3, C1	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 68 km				
LT 230 kV Livramento 3 - Alegrete 2, C1	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 126 km				
LT 230 kV Livramento 3 - Cerro Chato, C1	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 2 km				
	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 240 km	2023			
LT 230 kV Livramento 3 - Santa Maria 3, C1	Reator de Linha Fixo 230 kV, 1 x 27 Mvar 3Φ // SE Livramento 3	2023			
Sunta Flana 3, CI	Reator de Linha Fixo 230 kV, 1 x 27 Mvar 3Φ // SE Santa Maria 3	2023			
LT 525 kV Candiota 2 -	Circuito Duplo 525 kV, 4 x 954 MCM (Rail), 270 km	2023			
Guaíba 3, C1 e C2 (CD)	Reator de Linha Fixo 525 kV, (6+1R) x 50 Mvar 1Φ // SE Candiota 2	2023			
	Reator de Linha Fixo 525 kV, (6+1R) x 50 Mvar 1Φ // SE Guaíba 3	2023			
LT 230 kV Livramento 3 -	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 209 km	2023			
Maçambará 3, C1	Reator de Linha Fixo 230 kV, 1 x 15 Mvar 3Φ // SE Livramento 3	2023			
	Reator de Linha Fixo 230 kV, 1 x 15 Mvar 3Φ // SE Maçambará 3	2023			
LT 525 kV Povo Novo -	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 235 km	2023			
Guaíba 3, C2	Reator de Linha Fixo 525 kV, (3+1R) x 50 Mvar 1Φ // SE Guaíba 3	2023 2023			
LT 230 kV Porto Alegre 8 -	Reator de Linha Fixo 525 kV, 3 x 50 Mvar 1Φ // SE Povo Novo Circuito Simples 230 kV, 1 x 795 MCM (Drake), 8 km				
Porto Alegre 1, C1 LT 230 kV Jardim Botânico -	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 8 km				
Porto Alegre 1, C1	Recapacitação Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), C1, 140	2023			
LT 230 kV Vila Maria - Passo Fundo, C1 e C2	Recapacitação Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), C2, 140	2023			
LT 220 M/ Nova Drata 2 Mil-	Recapacitação Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), C1, 55	2023			
LT 230 kV Nova Prata 2 - Vila Maria, C1 e C2	Recapacitação Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), C2, 52 km	2023			

	DESCRIÇÃO DA OBRA	DATA PREVISTA					
LT 230 kV Monte Claro - Nova	Recapacitação Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), C1, 30,9 km	2023					
Prata 2, C1 e C2	Recapacitação Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), C2, 31,9 km	2023					
SECC LT 230 kV Maçambará -	Circuito Simples 230 kV, 1 x 1113.0 MCM (BLUEJAY), 2 km						
Santo Ângelo, C2, na SE Maçambará 3	Circuito Simples 230 kV, 1 x 1113.0 MCM (BLUEJAY), 2 km	2023					
SECC LT 525 kV Povo Novo -	, , , , , , , , , , , , , , , , , , , ,						
Nova Santa Rita, C1, na SE Guaíba 3	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 4 km	2023					
SECC LT 230 kV Osório 2 -	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 4 km	2023					
Lagoa dos Barros, C1, na SE Osório 3	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 4 km	2023					
SECC LT 230 kV Presidente	Circuito Simples 230 kV, 2 x 636 MCM (Grosbeak), 2 km	2023					
Médici - Bagé 2, C1, na SE Candiota 2	Circuito Simples 230 kV, 2 x 636 MCM (Grosbeak), 2 km	2023					
SECC LT 230 kV Maçambará -	Circuito Simples 230 kV, 1 x 1113.0 MCM (BLUEJAY), 2 km	2023					
Santo Ângelo, C1, na SE	Circuito Simples 230 kV, 1 x 1113.0 MCM (BLUEJAY), 2 km	2023					
Maçambará 3	Reator de Linha Manobrável 230 kV, 1 x 30 Mvar 3Φ	2023					
SECC LT 230 kV Passo Fundo	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 0,5 km	2023					
- Nova Prata 2, C1, na SE Vila Maria	Circuito Simples 230 kV, 1 x 795 MCM (Drake), 0,5 km	2023					
SECC LT 230 kV Passo Fundo	Circuito Simples 230 kV, 1 x 795.0 MCM (DRAKE), 0,5 km	2023					
- Nova Prata 2, C2, na SE Vila Maria	Circuito Simples 230 kV, 1 x 795.0 MCM (DRAKE), 0,5 km	2023					
LT 525 kV Capivari do Sul -	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 249 km	2024					
Siderópolis 2, C1	Reator de Linha Fixo 525 kV, (3+1R) x 33,3 Mvar 1Φ // SE Siderópolis 2	2024					
LT 220 ld/ Livramanta 2	Circuito Simples 230 kV, 2 x 795 MCM (Drake), 240 km	2024					
LT 230 kV Livramento 3 - Santa Maria 3, C2	Reator de Linha Fixo 230 kV, 1 x 27 Mvar 3Φ // SE Livramento 3	2024					
	Reator de Linha Fixo 230 kV, 1 x 27 Mvar 3Φ // SE Santa Maria 3	2024					
LT 230 kV Gravataí 3 - Gravataí 2, C1	Recapacitação - Circuito Simples 230 kV, 1 x 715.5 MCM (Starling), 13,5 km	2024					
17 F25 11/ B	Circuito Simples 525 kV, 4 x 954 MCM (Rail), 235 km	2024					
LT 525 kV Povo Novo - Guaíba 3, C3	Reator de Linha Fixo 525 kV, (3+1R) x 50 Mvar 1Φ // SE Guaíba 3	2024					
Gualda 3, C3	Reator de Linha Fixo 525 kV, 3 x 50 Mvar 1Φ // SE Povo Novo	2024					
	Estudo de viabilidade + despesas de viagem	2024					
	Projeto basico	2024					
	Projeto executivo	2024					
LT 525 kV Itá - Santo Ângelo,	Custo equipamentos (hgis/sfv) fob porto santos	2024					
C1 e C2 (CS)	Administração/mobilização/desmobilização	2024					
	Custo materiais	2024					
	Custo de obra civil	2024					
LT 220 lA/ Coulon Colony	Custo montagem eletromecanica	2024					
LT 230 kV Caxias - Scharlau 2, C1 e C2 (CD)	Circuito Duplo 230 kV, 2 x 795 MCM (TERN), 53,27 km	2025					
LT 230 kV Caxias Norte - Vinhedos, C1	Circuito Simples 230 kV, 2 x 477 MCM (HAWK), 24 km						
LT 230 kV Caxias Norte - Monte Claro, C1	Circuito Simples 230 kV, 2 x 477 MCM (HAWK), 26 km						
LT 230 kV Caxias Norte - Caxias 6, C1	Circuito Simples 230 kV, 2 x 477 MCM (HAWK), 30 km						
SECC LT 230 kV Farroupilha - Caxias do Sul 5, C1 (CD), na SE Caxias Norte	Circuito Duplo 230 kV, 1 x 636 MCM (GROSBEAK), 10 km	2025					

DESCRIÇÃO DA OBRA							
SECC LT 230 kV Gravataí 2 - Canoas 2, C1, na SE Cachoeirinha 3	Circuito Duplo 230 kV, 1 x 795 MCM (DRAKE), 2,5 km	2025					
SECC LT 230 kV Gravataí 2 - Cidade Industrial, C2, na SE Cachoeirinha 3	Circuito Duplo 230 kV, 1 x 795 MCM (DRAKE), 2,5 km						
SECC LT 230 kV Farroupilha - Caxias do Sul 2, C1 (CD), na SE Caxias Norte	Circuito Duplo 230 kV, 1 x 715,5 MCM (STARLING), 10 km						
LT 230 kV Porto Alegre 1 - Porto Alegre 9, C1	Circuito Simples 230 kV, 1x1400mm ² Al, 9 km (subterrâneo)	2026					
LT 230 kV Capivari do Sul - Osório 3, C1	Circuito Simples 230 kV, 2 x 795 MCM (TERN), 28,83 km	2026					
LT 230 kV Guaíba 3 - Pólo Petroquímico, C1	Circuito Simples 230 kV, 2 x 795 MCM (TERN), 33,07 km	2026					
	Circuito Simples 525 kV, 4 x 636 MCM (GROSBEAK), 37,39 km	2026					
LT 525 kV Itá - Guaíba 3, C1	Reator de Linha Fixo 525 kV, 1 x 50 Mvar 1Φ (reserva) // SE Itá	2026					
	Desmantelamento do trecho entre o ponto de seccionamento e a SE Nova Santa Rita	2026					
LT 525 kV Guaíba 3 - Nova Santa Rita, C3	Circuito Simples 525 kV, 4 x 954 MCM (RAIL), 42,37 km	2026					
LT 230 kV Guaíba 3 - Charqueadas 3, C1	Circuito Simples 230 kV, 2 x 795 MCM (TERN), 10,24 km	2026					
LT 230 kV Caxias - São Sebastião do Caí 2, C1	Circuito Simples 230 kV, 2 x 795 MCM (TERN), 39,52 km	2026					
LT 230 kV Ivoti 2 - São Sebastião do Caí 2, C1	Circuito Simples 230 kV, 2 x 795 MCM (TERN), 19,61 km	2026					
LT 230 kV Farroupilha - Scharlau 2, C1	Desmantelamento dos ativos da CEEE-GT - Ponto de Seccionamento - Scharlau	2026					
LT 230 kV Farroupilha - Ivoti 2, C1	Circuito Simples 230 kV, 1 x 636 MCM (GROSBEAK), 3 km						
LT 525 kV Porto Alegre Sul - Capivari do Sul, C1	Circuito Simples 525 kV, 4 x 954 MCM (RAIL), 77,85 km	2026					
	Circuito Duplo 525 kV, 4 x 954 MCM (RAIL), 374,54 km	2026					
LT 525 kV Porto Alegre Sul - Abdon Batista 2, C1 e C2	Reator de Linha Fixo 525 kV, (6+1R) x 36,6 Mvar 1Φ // SE Abdon Batista 2	2026					
(CD)	Reator de Linha Fixo 525 kV, (6+1R) x 36,6 Mvar 1Φ // SE Abdon Batista 2	2026					
LT 230 kV Porto Alegre Sul -	Circuito Duplo 230 kV, 2 x 795 MCM (TERN), 7,29 km	2026					
Porto Alegre 4, C1 e C2 (CD)	Circuito Duplo 230 kV, 1x2500mm² Al, 7 km (subterrâneo)	2026					
LT 230 kV Porto Alegre Sul - Restinga, C1	Circuito Simples 230 kV, 2 x 795 MCM (TERN), 3,53 km	2026					
LT 230 kV Lajeado Grande 2 - Forquilhinha, C2	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 111 km	2026					
LT 230 kV Lajeado Grande 2 - Forquilhinha, C3	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 111 km	2026					
SECC LT 230 kV Cidade	Circuito Duplo 230 kV, 1x1200mm² Al, 5,46 km (subterrâneo)	2026					
Industrial - Charqueadas, C1, na SE Charqueadas 3	ndustrial - Charqueadas, C1, Desmantelamento do trecho entre o ponto de seccionamento e a SE						
SECC LT 230 kV Santa Cruz -	Circuito Duplo 230 kV, 1x1200mm² Al, 5,46 km (subterrâneo)	2026					
Charqueadas, C1, na SE Charqueadas 3	Desmantelamento do trecho entre o ponto de seccionamento e a SE Charqueadas						
SECC LT 230 kV Caxias -	Circuito Duplo 230 kV, 1 x 636 MCM (GROSBEAK), 1,2 km						
Campo Bom, C1 e C2 (CD), na SE Ivoti 2	Circuito Duplo 230 kV, 1 x 636 MCM (GROSBEAK), 1,2 km	2026					
SECC LT 230 kV Porto Alegre 13 - Porto Alegre 6, C1, na SE Porto Alegre Sul	Circuito Duplo 230 kV, 1 x 636 MCM (GROSBEAK), 5,43 km	2026					

DESCRIÇÃO DA OBRA				
SECC LT 230 kV Porto Alegre	Circuito Duplo 230 kV, 1 x 954 MCM (RAIL), 8 km (aéreo)	2026		
4 - Porto Alegre 6, C1, na SE Porto Alegre Sul	Circuito Duplo 230 kV, 1 x 954 MCM (RAIL), 0,79 km (compacta)	2026		
SECC LT 230 kV Gravataí 2 - Cidade Industrial, C2, na SE Canoas 2	Circuito Duplo 230 kV, 1 x 795 MCM (DRAKE), 2,5 km	2026		
SECC LT 230 kV Lajeado	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 4 km	2026		
Grande - Forquilhinha, C1, na SE Lajeado Grande 2	Circuito Simples 230 kV, 1 x 636 MCM (Grosbeak), 4 km	2026		
LT 230 kV Porto Alegre 19 - Viamão 3, C1	Circuito Simples 230 kV, 1x1600mm² Al, 5,3 km (subterrâneo)	2027		
SECC LT 230 kV Gravataí 2 - Porto Alegre 8, C1, na SE Porto Alegre 19	Circuito Duplo 230 kV, 1x2500mm ² Al, 5,25 km (trecho PAL19 - PAL8) + 1x1200mm ² Al, 5,25 km (trecho PAL19 - Gravataí 2) (subterrâneo)	2027		

Tabela 10 - Expansões previstas para o estado do Rio Grande do Sul - Subestações

DESCRIÇÃO DA OBRA							
SE 230/69 kV Farroupilha	3º TF 230/69 kV, 1 x 100 MVA 3Ф	2020					
SE 230/69 kV Ijuí 2	3° TF 230/69 kV, 1 x 83 MVA 3Ф						
SE 230/69 kV Jardim Botânico	3° TF 230/69 kV, 1 x 83 MVA 3Ф						
SE 230/69 kV Torres 2	1° e 2° TF 230/69 kV, 2 x 83 MVA 3Ф						
SE 230/69 kV Candelária 2	1° e 2° TF 230/69 kV, 2 x 83 MVA 3Ф	2020					
SE 230/69 kV Cruz Alta 2	1° e 2° TF 230/69 kV, 2 x 83 MVA 3Ф	2022					
SE 525/230 kV Guaíba 3	1° e 2° Reator de Barra 525 kV, (6+1R) x 33,3 Mvar 1Φ	2023					
3L 323/230 KV Gualba 3	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Φ	2023					
SE 525/230 kV Candiota 2	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Φ	2023					
CE E3E/330 IA/ Coniversi de	1° e 2° ATF 230/138 kV, 2 x 100 MVA 3Ф	2023					
SE 525/230 kV Capivari do Sul	1° e 2° Reator de Barra 525 kV, (6+1R) x 33,3 Mvar 1Ф	2023					
Sui	1º e 2º ATF 525/230 kV, (6 + 1R) x 224 MVA 1Φ	2023					
SE 230/138 kV Vila Maria	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2023					
SE 230/138/69 kV Quinta	3° TF 230/69 kV, 3 x 55 MVA 1Ф	2023					
SE 230/138 kV Presidente Médici	2° ATF 230/138 kV, 3 x 38,33 MVA 1Ф	2023					
	2° TF 230/69 kV, 3 x 55 MVA 1Ф	2023					
SE 230/69 kV Caxias do Sul 2	Aquisição de Terreno	2023					
	2 x EL (Entrada de Linha) 230 KV, Arranjo BD4 (GIS)	2023					
SE 230/23 kV Campo Bom	Subst. 1° e 2° TF 230/23 kV, 2 x 75 MVA 3Φ (Atuais: 2x50 MVA 3Φ)	2023					
SE 230/23 kV Cidade	Subst. 1° e 2° ATF 230/138 kV, (6+1R) x 75 MVA 1Φ (Atual: 150MVA)	2023					
Industrial	Subst. 1° e 2° TF 230/23 kV, 2 x 75 MVA 3Φ (Atual: 50 MVA)	2023					
CE 220/22 Id/ Eldorado do Cul	Subst. 1° TF 230/23 kV, 1 x 75 MVA 3Φ (Atual: 50 MVA)	2023					
SE 230/23 kV Eldorado do Sul	2° TF 230/23 kV, 1 x 75 MVA 3Ф	2023					
SE 230/23 kV Canoas 1	Subst. 1° e 2° TF 230/23 kV, 2 x 75 MVA 3Φ (Atuais: 2x50 MVA 3Φ)	2023					
SE 525/230 kV Gravataí	Subst. 1°, 2° e 3° ATF 525/230 kV, (9+1R) x 224 MVA 1Ø (atual: (9+1R)x224 MVA 1Ø)	2023					
,	4° ATF 525/230 kV, 3 x 224 MVA 1Φ	2023					
CE 220/22 kV Crayata(2	Subst. 1° TF 230/23 kV, 1 x 75 MVA 3Φ (Atual: 50 MVA)	2023					
SE 230/23 kV Gravataí 2	2° TF 230/23 kV, 1 x 75 MVA 3Ф	2023					
SE 230/69 kV Gravataí 3	2° TF 230/69 kV, 3 x 55 MVA 1Ф	2023					
SE 230/69 kV Pólo Petroquímico	Subst. 1° e 2° TF 230/69 kV, 2 x 165 MVA 3Φ (Atual: 50 MVA)	2023					

	DESCRIÇÃO DA OBRA	DATA PREVISTA						
	1°, 2°, 3°, 4° e 5° TF 230/13,8 kV, 5 x 75 MVA 3Φ (Atuais: 5x50 MVA							
	3Φ)	2023						
SE 230/13.8 kV Porto Alegre	CT (Conexão de Transformador) 13,8 kV, Arranjo BDDD (Cubículo Abrigado)	2023						
	3 EL (Entrada de Linha) 230 kV, Arranjo BD4 (GIS)	2023						
	IB (Interligação de Barras) 230 kV, Arranjo BD4 (GIS)	2023						
SE 230/13.8 kV Porto Alegre	Subst. 1° TF 230/13,8 kV, 1 x 75 MVA 3Φ (Atual: 50 MVA)	2023						
6	2° TF 230/13,8 kV, 1 x 75 MVA 3Ф							
	Subst. 1° TF 230/13,8 kV, 1 x 75 MVA 3Φ (Atual: 60 MVA)	2023						
SE 230/13.8 kV Porto Alegre	2° TF 230/13,8 kV, 1 x 75 MVA 3Ф	2023						
9	CT (Conexão de Transformador) 13,8 kV, Arranjo BPT (Cubículo Abrigado)	2023						
	IB (Interligação de Barras) 230 kV, Arranjo BD4 (GIS)	2023						
SE 230/13.8 kV Porto Alegre	Subst. 1° e 2° TF 230/13,8 kV, 2 x 75 MVA 3Φ (Atual: 50 MVA)	2023						
13	CT (Conexão de Transformador) 13,8 kV, Arranjo BPT (Cubículo Abrigado)	2023						
SE 230/69 kV Restinga	3° TF 230/69 kV, 1 x 83 MVA 3Ф	2023						
SE 230/23 kV Scharlau	Subst. 1° e 2° TF 230/23 kV, 2 x 75 MVA 3Φ (Atual: 50 MVA)	2023						
SE 230/138 kV Taquara	3° ATF 230/138 kV, 3 x 50 MVA 1Ф	2023						
SE 230/69 kV Nova Petrópolis 2	3° TF 230/69 kV, 1 x 83 MVA 3Ф	2023						
CE 220/60/12 9 kV Caviac 6	3° TF 230/69 kV, 3 x 55 MVA 1Ф	2023						
SE 230/69/13.8 kV Caxias 6	Aquisição de Terreno	2023						
	1° e 2° TF 230/69 kV, 2 x 165 MVA 3Ф	2023						
SE 230/69 kV Nova Prata 2	Desativação de 1 CT 230 KV BD4 e 1 CT 69 KV BPT	2023						
	Desmontagem e transporte de 3 TRs 230/69kV, 50 MVA cada	2023						
SE 230/69 kV Vinhedos	3° ATF 230/69 kV, 1 x 165 MVA 3Ф	2023						
SE 230 kV Livramento 3	1° e 2° Reator de Barra 230 kV, 2 x 30 Mvar 3Ф	2024						
SE 525 kV Marmeleiro 2								
SE 230 kV Livramento 3	Compensador Síncrono 230 kV, 1 x (-90/+150) Mvar	2024						
SE 230/69 kV Cachoeirinha 3	1°, 2° e 3° ATF 230/138 kV, (9+1R) x 55 MVA 1Ф	2025						
SE 525/230/138 kV Caxias	1°, 2° e 3° ATF 230/138 kV, 3 x 225 MVA 3Ф	2025						
Norte	1°, 2° e 3° ATF 525/230 kV, (9 + 1R) x 224 MVA 1Φ	2025						
SE 230/69/13.8 kV Caxias do Sul 5	3° TF 230/13,8 kV, 1 x 50 MVA 3Ф	2025						
SE 525/230 kV Guaíba 3	Compensador Estático 525 kV, 1 x (-180/+300) Mvar	2026						
SE 230/69 kV Charqueadas 3	1° e 2° TF 230/69 kV, 2 x 150 MVA 3Ф	2026						
SE 230/138 kV São Sebastião do Caí 2	1° e 2° ATF 230/138 kV, 2 x 150 MVA 3Ф	2026						
SE 230/138 kV Ivoti 2	1°, 2° e 3° ATF 230/138 kV, 3 x 150 MVA 3Ф	2026						
SE 525/230/69 kV Porto	1° e 2° ATF 525/230 kV, (6+1R) x 224 MVA 1Ф	2026						
Alegre Sul	1° e 2° Reator de Barra 525 kV, (6+1R) x 50 Mvar 1Φ	2026						
SE 230/69 kV Gravataí 3	3° ATF 230/69 kV, 3 x 55 MVA 1Ф	2027						
SE 230/69 kV Porto Alegre 19	1° e 2° TF 230/69 kV, 2 x 150 MVA 3Ф	2027						
SE 230/138 kV São Sebastião do Caí 2	3° ATF 230/138 kV, 1 x 150 MVA 3Ф	2027						
SE 230/69 kV Caxias do Sul 2	3° TF 230/69 kV, 3 x 55 MVA 1Φ	2027						

4 DIAGNÓSTICO DO SISTEMA DE TRANSMISSÃO

4.1 Estado do Mato Grosso do Sul - Análise do Desempenho Elétrico da Rede

Durante o ano de 2015, foi desenvolvido um estudo de planejamento envolvendo todo o estado do Mato Grosso do Sul para solucionar os problemas de subtensões e sobrecargas previstos no sistema elétrico local. Esse estudo recomendou um quantitativo expressivo de instalações de transmissão em 230 kV na região que foram objeto de licitação no Leilão de transmissão 005/2016 e têm previsão de entrada em operação até julho de 2022.

Tendo em vista que os casos do Plano Decenal 2029 já contemplam todas as expansões previstas para o estado nos estudos de planejamento, as avaliações do diagnóstico do desempenho elétrico do sistema não apresentaram quaisquer violações de fluxo em instalações de Rede Básica ou subestações de fronteira.

O único cenário que apresentou uma tendência de esgotamento dos recursos de controle de tensão foi o cenário denominado Carga Média – Norte Úmido, correspondente ao período de entressafra das usinas biomassa. Essa tendência de esgotamento dos recursos de controle de tensão, apresentado na Tabela 11 a seguir, só é evidenciada no último ano de análise (2031) na contingência da LT 230kV Dourados 2 - Ivinhema ou da LT 230kV Rio Brilhante – Dourados 2.

Tabela 11 - Violações de tensão verificadas em condição de contingência simples no patamar de carga média cenário Norte Úmido.

CONTINGÊNCIA	SUBESTAÇÃO	2024	2025	2026	2027	2028	2029	2030	2031
LT 230 kV DOUR22-MS230 - IVINHE-MS230, C1	DOUR22-MS230	96,2%	97,3%	96,3%	95,1%	94,5%	94,3%	94,1%	NC
LT 230 kV RBRILH-MS230 - DOUR22-MS230, C1	DOURAD-MS230	98,5%	99,8%	99,0%	97,5%	97,1%	94,6%	95,0%	94,0%
	DOUR22-MS230	97,1%	98,0%	97,3%	95,5%	95,2%	93,1%	93,5%	92,6%
	RBRILH-MS138	98,6%	98,7%	98,7%	97,1%	96,7%	95,7%	95,5%	94,3%

4.2 Estado do Paraná - Análise do Desempenho Elétrico da Rede

Com base na avaliação dos casos base do Plano Decenal 2029 foram obtidas as seguintes constatações sobre o desempenho elétrico da rede no período 2024-2031:

- Em regime normal de operação, não foram verificadas violações dos limites de tensão em nenhum dos cenários avaliados.
- No patamar de carga média do cenário Norte Úmido, em condição normal de operação, foram verificados fluxos elevados na LT 230kV Maringá – Sarandi a partir do ano 2029. Nessas mesmas condições, foram verificadas sobrecargas na transformação de fronteira da SE Medianeira a partir de 2026.
- As simulações de contingências simples na malha de 525kV indicaram o esgotamento dos recursos de controle de tensão apenas no ano horizonte de análise (2031), para o patamar de carga média no cenário Norte Úmido. Nessa condição, a contingência da linha de transmissão Joinville Sul – Areia provoca afundamento de tensão em todo o sistema que atende a região leste dos estados do Paraná e Santa Catarina. As contingências das linhas de transmissão Itá – Salto Santiago C1 ou C2 também provocam afundamento de tensão na região metropolitana de Curitiba e nas regiões Norte e Vale do Itajaí.
- A contingência mais crítica da malha de 525kV é a perda simples da linha de transmissão
 Campos Novos Areia, que provoca um severo afundamento de tensão na malha de 525kV
 dos estados de Santa Catarina e Paraná.
- Em condição de contingência simples da malha de 230kV do estado, as violações de tensão mais severas foram verificadas na região noroeste, no patamar de carga média, tanto no cenário Norte Úmido quanto no cenário Norte Seco. Nos dois cenários as subestações Medianeira, Foz do Iguaçu Norte e Realeza Sul apresentaram problemas de subtensão em contingências simples da malha de 230kV local. Também foram verificados problemas de subtensão nas instalações de Rede Básica do litoral norte do estado, em especial na contingência linha de transmissão GPS Posto Fiscal.
- A contingência simples da LT 230kV Salto Osório Pato Branco, no patamar de carga média do cenário Norte Úmido, apresenta gradativa deterioração dos níveis de tensão no barramento de 230kV da SE Pato Branco nos anos finais de análise (2030 e 2031).
- A contingência simples da LT 230kV Sarandi Paranavaí Norte, no patamar de carga média dos cenários Norte Úmido ou Norte Seco, apresenta gradativa deterioração dos níveis de tensão no barramento de 230kV da SE Paranavaí Norte a partir do ano 2028.

- No cenário Norte Úmido, patamar de carga média, foram verificados fluxos elevados (acima de 90% da capacidade nominal) em condição normal de operação na linha de transmissão Maringá - Sarandi a partir do ano 2029.
- No cenário Norte Seco, patamar de carga média, foram verificados fluxos elevados (acima de 90% da capacidade nominal) na LT 230 kV Umbará – Santa Quitéria quando da contingência da LT 230kV Campo Comprido – Santa Quitéria a partir do ano 2030.
- Em condição normal de operação, nos cenários Norte Úmido ou Norte Seco, foram verificadas sobrecargas na transformação de fronteira da subestação 230/138kV Medianeira a partir do ano 2026.
- Em condição de contingências simples no sistema de 525kV, no patamar de carga média do cenário Norte Úmido, foram verificadas violações dos limites de carregamentos das seguintes linhas de transmissão:
 - ➤ LT 525kV Curitiba Bateias C1 ou C2, a partir de 2026, na contingência de um dos circuitos, afetando também as linhas de 230kV Bateias Campo Comprido C1, C2 e C3 e Curitiba Bateias;
 - ➤ LT 500kV Londrina Assis C2, a partir de 2029, na contingência do circuito C1. É importante destacar que a sobrecarga verificada nos anos finais de análise está fortemente associada aos fluxos da interligação Sul- Sudeste e, em função da necessidade de despacho termelétrico para fechamento de balanço interno à região sul, verificou-se a diminuição dos valores de fluxo na LT 500kV Londrina Assis C2 apenas no ano de 2030.
 - ➤ LTs 230kV Uberaba Umbará Campo do Assobio, na contingência do circuito 1 da LT 500kV Curitiba Leste Curitiba a partir de 2025.
- Em condição de contingências simples no sistema de 230kV, no patamar de carga média dos cenários Norte Úmido e Norte Seco, foram verificadas violações dos limites de carregamento das seguintes instalações:
 - ➤ LT 230kV Bateias Campo Comprido C1, C2 ou C3, na perda simples de quaisquer um desses circuitos, a partir de 2026.
 - ▶ LT 230kV Umbará Gralha Azul, a partir de 2029, nas contingências das LTs 230kV Gralha Azul Repar ou Repar D.I. São José dos Pinhais;
 - ▶ LT 230kV Maringá Sarandi C1 ou C2, a partir de 2025, na contingência de um desses circuitos;
 - LT 230kV Cascavel Medianeira, a partir de 2027, na perda da LT 230kV Medianeira
 Cascavel Oeste. De forma similar, a perda da LT 230kV Cascavel Medianeira
 provoca sobrecarga na LT 230kV Medianeira Cascavel Oeste a partir de 2029.

- Especificamente no cenário Norte Seco, patamar de carga média, foram verificadas violações dos limites de carregamento da Umbará – Curitiba C1 ou C2 quando da contingência de um desses circuitos a partir de 2025. Adicionalmente, nesse cenário, foram identificadas sobrecargas na LT 230kV Cascavel – Medianeira a partir de 2029 quando da contingência da LT 230kV Cascavel Oeste – Medianeira.
- Em condição de contingências simples nas transformações de fronteira, no patamar de carga média do cenário Norte Úmido, foram verificadas violações dos limites de carregamentos das subestações Cascavel 230/138kV (2030); Londrina 230/138kV (2031), Santa Quitéria (2031) 230/69kV e Realeza Sul 230/138kV (2031).
- Em condição de contingências simples nas transformações de fronteira, no patamar de carga média do cenário Norte Seco, são verificados fluxos próximos aos limites de carregamentos da subestação Apucarana 230/138kV (2031). Especificamente no caso da subestação Medianeira, verifica-se que as contingências das transformações das subestações Foz do Iguaçu Norte e Guaíra provocam sobrecargas em sua transformação a partir de 2028.

É importante destacar que grande parte dos problemas identificados no diagnóstico dos casos base do Plano Decenal 2029 está associada ao sistema elétrico que atende à região metropolitana de Curitiba. Essa região foi objeto de análise do Estudo de Atendimento à Região Metropolitana de Curitiba — Volume 1 (EPE-DEE-RE-006-2018-rev0) e está sendo complementada pelas recomendações do Volume 2, que possui previsão de término para dezembro de 2019. O conjunto de obras recomendado nesses dois volumes permitirá solucionar as sobrecargas dos transformadores de fronteira da subestação Santa Quitéria, de subtensão na subestação Posto Fiscal, bem como as sobrecargas verificadas nas linhas de transmissão em 230kV da região metropolitana.

No caso específico das contingências da malha de 525kV (LTs Itá – Salto Santiago C1 ou C2, Campos Novos – Areia ou Joinville Sul – Areia), que se mostraram bastante severas para o desempenho elétrico do sistema, é importante destacar que no Volume 2 do estudo de atendimento à região metropolitana de Porto Alegre (Relatório EPE-DEE-RE-039/2019-rev0), recomendou novos eixos de transmissão em 525kV que reforçarão as interligações entre três estados da região sul. Dentre as principais recomendações desse estudo destacam-se as LTs 525kV Segredo – Abdon Batista 2 C1 e Ponta Grossa – Abdon Batista 2 C1 e C2.

Além disso, o Volume 2 do estudo de atendimento à região metropolitana de Curitiba também contemplará uma série de reforços na malha de 525kV do estado do Paraná e, em conjunto, os

reforços sistêmicos recomendados no estudo de atendimento a Porto Alegre as restrições vislumbradas na malha de 525kV poderão ser equacionadas.

As tabelas a seguir apresentam os principais resultados das simulações realizadas.

Tabela 12 – Violações de tensão verificadas em condição de contingência simples no patamar de carga média cenário Norte Úmido².

CONTINGÊNCIA	SUBESTAÇÃO	2024	2025	2026	2027	2028	2029	2030	2031
LT 525 kV JNVSUL-SC525 - AREIAPR525, C1	JNVSUL-SC525	96,8%	97,8%	96,9%	96,4%	95,3%	94,3%	94,5%	DIV
	CBALES-PR525	97,8%	98,7%	97,7%	97,2%	95,5%	96,2%	97,1%	94,2%
	CURITI-PR525	97,7%	98,5%	97,7%	97,3%	95,8%	96,5%	97,6%	94,9%
LT FOE LIVITA COFOE COANTI PRESE CA	JNVSUL-SC525	97,2%	98,2%	97,0%	97,0%	95,0%	95,6%	96,4%	93,3%
LT 525 kV ITASC525 - SSANTI-PR525, C1	ITAJI2-SC525	97,5%	98,3%	97,8%	97,5%	95,4%	96,4%	96,9%	93,7%
	GASPAR-SC525	97,9%	99,0%	97,8%	97,7%	95,9%	96,8%	97,3%	94,1%
	BLUMEN-SC525	97,8%	98,6%	97,5%	97,8%	95,8%	96,8%	97,3%	94,2%
LT 525 kV ITASC525 - SSANTI-PR525, C2	JNVSUL-SC525	97,6%	98,7%	97,5%	97,5%	96,1%	96,3%	96,8%	94,5%
L1 323 KV 11A3C323 - 33AN11-PR323, C2	ITAJI2-SC525	97,9%	98,7%	98,2%	97,9%	96,5%	97,0%	97,3%	94,9%
	GAR-A-INT525	97,4%	96,6%	93,7%	NC	DIV	DIV	DIV	DIV
	GAR-B-INT525	97,4%	96,6%	93,7%	NC	DIV	DIV	DIV	DIV
	CBALES-PR525	97,2%	97,5%	94,9%	NC	DIV	DIV	DIV	DIV
LT 525 kV CNOVOS-SC525 - AREIAPR525. C1	JNVSUL-SC525	96,2%	96,5%	92,8%	NC	DIV	DIV	DIV	DIV
23 KV CNOV 03-30323 - AREIAFR323, C1	ITAJI2-SC525	96,9%	96,9%	93,7%	NC	DIV	DIV	DIV	DIV
	GASPAR-SC525	97,2%	97,4%	93,6%	NC	DIV	DIV	DIV	DIV
	BLUMEN-SC525	97,1%	97,0%	93,3%	NC	DIV	DIV	DIV	DIV
	PATOBR-PR230	96,9%	97,7%	94,4%	NC	DIV	DIV	DIV	DIV
LT 230 kV CASCAV-PR230 - MEDIAN-PR230, C1	MEDIAN-PR230	93,5%	92,6%	92,1%	91,5%	91,2%	90,9%	90,6%	90,3%
ET 230 KV CASCAV-FR250 - WILDIAN-FR250, CT	FOZNOR-PR230	92,6%	91,5%	90,7%	89,8%	89,2%	88,6%	87,9%	87,3%
	MEDIAN-PR230	91,2%	90,7%	90,0%	89,3%	88,9%	88,4%	87,9%	87,6%
LT 230 kV CASCVO-PR230 - MEDIAN-PR230, C1	FOZNOR-PR230	90,2%	89,2%	88,1%	87,0%	86,4%	85,8%	85,1%	84,5%
	FIGUAC-PR138	99,4%	99,3%	99,2%	98,3%	97,5%	96,7%	95,6%	94,8%
LT 230 kV SARAND-PR230 - PRVNRT-PR230, C1	PRVNRT-PR230	96,2%	95,8%	95,5%	95,1%	94,8%	94,5%	94,2%	94,0%
LT 230 kV SARAND-PR230 - PRVNRT-PR230, C2	PRVNRT-PR230	96,2%	95,8%	95,5%	95,1%	94,8%	94,5%	94,2%	94,0%
LT 230 kV CBALES-PR230 - P.FISC-PR230, C1	P.FISC-PR230	99,2%	99,0%	101,6%	97,4%	94,6%	94,3%	90,8%	92,4%
LT 230 kV MEDIAN-PR230 - FOZNOR-PR230, C1	FOZNOR-PR230	94,7%	94,2%	93,7%	93,0%	92,7%	92,5%	92,2%	92,0%
LT 230 kV MEDIAN-PR230 - FOZNOR-PR230, C2	FOZNOR-PR230	94,8%	94,3%	93,9%	93,3%	93,0%	92,7%	92,4%	92,2%
ATF-1 230/138 kV MEDIAN-PR230 - MEDIAN- PR138	FOZNOR-PR230	94,8%	94,3%	93,8%	93,2%	92,8%	92,6%	92,2%	92,0%
LT 230 kV GPSPR230 - P.FISC-PR230, C1	P.FISC-PR230	98,3%	98,1%	98,2%	97,7%	95,0%	94,7%	94,2%	94,2%
LT 230 kV SOSORI-PR230 - PATOBR-PR230, C1	PATOBR-PR230	98,9%	98,6%	95,0%	95,8%	97,0%	95,0%	94,8%	94,4%

² Os resultados das simulações da contingência simples da linha de 525kV Campos Novos - Areia apresentam colapso de tensão na malha de 525kV dos estados do Paraná e Santa Catarina a partir do ano 2027 de modo que não é possível apresentar um tabelamento específico das subestações com violação de tensão. A implantação das LTs 525kV Segredo – Abdon Batista 2 e Ponta Grossa – Abdon Batista C1 e C2, que não estão representadas nos casos base, equacionam esse problema.

Tabela 13 – Violações de tensão verificadas em condição de contingência simples no patamar de carga média cenário Norte Seco.

CONTINGÊNCIA	SUBESTAÇÃO	2024	2025	2026	2027	2028	2029	2030	2031
LT 230 kV B.IGUA-PR230 - REALEZ-PR230, C1	REALEZ-PR230	94,9%	94,2%	94,2%	93,4%	92,9%	92,8%	92,6%	92,4%
LT 230 kV CASCAV-PR230 - MEDIAN-PR230, C1	MEDIA N-PR230	93,2%	92,3%	91,8%	91,4%	91,1%	90,8%	90,6%	90,3%
ET 250 KV GAGGAV FIESG MESIANTIESG, GT	FOZNOR-PR230	92,3%	91,2%	90,4%	89,6%	89,1%	88,5%	88,0%	87,4%
	MEDIAN-PR230	91,1%	90,4%	89,8%	89,3%	88,8%	88,4%	87,9%	87,4%
LT 230 kV CASCVO-PR230 - MEDIAN-PR230, C1	FOZNOR-PR230	90,0%	88,8%	87,8%	87,0%	86,4%	85,8%	85,1%	84,4%
	FIGUAC-PR138	99,3%	99,2%	99,1%	98,2%	97,5%	96,7%	95,6%	94,6%
LT 230 kV GPSPR230 - P.FISC-PR230, C1	P.FISC-PR230	99,2%	97,0%	98,2%	98,0%	95,1%	94,9%	94,6%	94,4%
LT 230 kV SARAND-PR230 - PRVNRT-PR230, C1	PRVNRT-PR230	96,8%	96,4%	96,1%	95,7%	95,4%	94,8%	94,4%	93,8%
LT 230 kV SARAND-PR230 - PRVNRT-PR230, C2	PRVNRT-PR230	96,8%	96,4%	96,1%	95,7%	95,4%	94,8%	94,4%	93,8%
LT 230 kV CBALES-PR230 - P.FISC-PR230, C1	P.FISC-PR230	96,5%	95,5%	97,3%	96,9%	91,1%	91,0%	90,5%	89,7%
LT 230 kV MEDIAN-PR230 - FOZNOR-PR230, C1	FOZNOR-PR230	94,5%	93,9%	93,4%	93,0%	92,7%	92,5%	92,2%	91,9%
LT 230 kV MEDIAN-PR230 - FOZNOR-PR230, C2	FOZNOR-PR230	94,7%	94,1%	93,6%	93,2%	93,0%	92,7%	92,4%	92,2%
ATF-1 230/138 kV MEDIAN-PR230 - MEDIAN- PR138	FOZNOR-PR230	94,6%	94,1%	93,6%	93,1%	92,8%	92,5%	92,2%	91,9%

Tabela 14 – Violações de fluxo verificadas em condição normal de operação no patamar de carga média cenário Norte Úmido.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
	MARING-PR230	1	-136 -32	-141 -32	-147 -36	-152 -32	-155 -34	-159 -38	-159 -42	-165 -34
Condição Normal	SARAND-PR230	182	79%	81%	85%	87%	88%	91%	91%	93%
Condição Normai	MED-T1-PR000	1	124 60	132 65	135 71	140 77	145 82	147 88	153 93	156 100
	MEDIA N-PR138	150	91%	97%	101%	106%	110%	113%	118%	122%

Tabela 15 – Violações de fluxo verificadas em condição normal de operação no patamar de carga média cenário Norte Seco.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS E TRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
Condição Normal	MED-T1-PR000	1	124 60	132 65	135 71	140 77	145 82	147 88	153 93	156 100
Condição Normai	MEDIA N-PR138	150	91%	97%	101%	106%	110%	113%	118%	122%

Tabela 16 –Violações de fluxo verificadas em condição de contingência simples no patamar de carga média cenário Norte Úmido.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS E TRAFOS	NC	MW Mvar	MW Mvar	MW Mvar	MW Mvar				
		LIM.	%	%	%	%	%	%	%	%
LT FOOLING ONED DEFON ASSISTANCE OF	LONDRI-PR500	1	-1514 230	-1602 229	-1714 149	-1824 308	-1868 305	-2115 492	-1855 297	-2176 639
LT 500 kV LONDRI-PR500 - ASSISSP500, C2	ASSISSP500	1905	75%	79%	84%	90%	92%	107%	92%	112%
	BATEIA-PR230	1	320 0	331 10	351 13	359 25	371 64	356 105	335 59	364 65
	C.COMP-PR230	374	85%	88%	93%	95%	98%	95%	89%	96%
LT 525 kV CURITI-PR525 - BATEIA-PR525, C1	BATEIA-PR230	2	320 0	331 10	351 13	359 25	371 64	356 105	335 59	364 65
LI 525 KV CURITI-FR525 - BATEIA-FR525, CT	C.COMP-PR230	374	85%	88%	93%	95%	98%	95%	89%	96%
	BATEIA-PR230	3	302 -9	312 0	330 2	339 13	351 50	339 88	317 46	344 50
	C.COMP-PR230	368	82%	84%	89%	91%	93%	91%	85%	92%
	BATEIA-PR230	1	306 0	317 11	335 14	344 25	355 65	341 106	321 60	347 65
	C.COMP-PR230	374	82%	84%	89%	91%	94%	91%	85%	92%
	BATEIA-PR230	2	306 0	317 11	335 14	344 25	355 65	341 106	321 60	347 65
LT 525 kV CURITI-PR525 - BATEIA-PR525, C2	C.COMP-PR230	374	82%	84%	89%	91%	94%	91%	85%	92%
E1 323 KV CORTIFFR323 - BATEM-FR323, C2	CURITI-PR525	1	-2551 -133	-2652 -147	-2805 -165	-2821 -183	-2837 -158	-2824 123	-2656 -215	-2881 -202
	BATEIA-PR525	2728	94%	97%	103%	105%	106%	105%	99%	108%
	CURITI-PR525	1	-2551 -133	-2652 -147	-2805 -165	-2821 -183	-2837 -158	-2824 123	-2656 -215	-2881 -202
	BATEIA-PR525	2728	94%	97%	103%	105%	106%	105%	99%	108%
	UBERAB-PR230	2	-209 -33	-215 -34	-225 -34	-229 -32	-231 -32	-241 -34	-238 -40	-247 -36
	UMBARA-PR230	219	98%	101%	106%	107%	108%	113%	112%	116%
	UMBARA-PR230	1	261 64	269 67	281 69	285 69	288 77	299 80	296 88	306 86
LT 525 kV CURITI-PR525 - CBALES-PR525, C1	CASSOB-PR230	298	89%	92%	96%	97%	98%	102%	102%	105%
ET 323 KV GGIATTI KOZO GBAZIZOT KOZO, GT	GRALHA-PR230	1	252 43	259 45	272 45	276 43	278 47	334 71	327 65	337 67
	REPARPR230	369	69%	71%	74%	75%	76%	91%	89%	91%
	CBALES-PR230	1	-267 30	-274 36	-296 51	-293 62	-286 95	-338 92	-312 87	-332 106
	DI.SJP-PR230	394	69%	71%	77%	77%	77%	90%	83%	89%
	BATEIA-PR230	2	332 120	343 123	360 152	367 142	375 160	358 137	337 81	364 87
LT 230 kV BATEIA-PR230 - C.COMP-PR230, C1	C.COMP-PR230	374	92%	95%	102%	102%	106%	98%	90%	97%
	BATEIA-PR230	3	316 103	326 106	344 132	349 122	358 140	341 119	319 66	345 71
	C.COMP-PR230	368	88%	90%	97%	98%	101%	93%	86%	93%
	BATEIA-PR230	1	332 120	343 123	360 152	367 142	375 160	358 137	337 81	364 87
LT 230 kV BATEIA-PR230 - C.COMP-PR230, C2	C.COMP-PR230	374	92%	95%	102%	102%	106%	98%	90%	97%
	BATEIA-PR230	3	316 103	326 106	344 132	349 122	358 140	341 119	319 66	345 71
	C.COMP-PR230	368	88%	90%	97%	98%	101%	93%	86%	93%
	BATEIA-PR230	1	327 116	338 119	355 147	362 137	370 155	352 133	332 77	358 83
LT 230 kV BATEIA-PR230 - C.COMP-PR230, C3	C.COMP-PR230	374	90%	93%	100%	101%	104%	96%	89%	95%
,	BATEIA-PR230	2	327 116	338 119	355 147	362 137	370 155	352 133	332 77	358 83
	C.COMP-PR230	374	90%	93%	100%	101%	104%	96%	89%	95%
LT 230 kV GRALHA-PR230 - REPARPR230, C1	UMBARA-PR230	1	-56 -23	-58 -21	-64 -42	-64 -27	-65 -37	-427 -114	-423 2	-409 -61
.,	GRALHA-PR230	433	14%	15%	18%	16%	18%	100%	96%	94%
LT 230 kV REPARPR230 - DI.SJP-PR230, C1	UMBARA-PR230	1	-45 -19	-47 -17	-53 -38	-53 -23	-54 -33	-416 -110	-412 5	-398 -57
	GRALHA-PR230	433	12%	12%	16%	14%	15%	98%	94%	91%
LT 230 kV CASCAV-PR230 - MEDIAN-PR230, C1	CASCVO-PR230	1	264 113	278 134	287 152	296 165	305 176	311 188	322 202	328 216
	MEDIAN-PR230	383	74%	79%	83%	86%	90%	92%	96%	99%
LT 230 kV CASCVO-PR230 - MEDIAN-PR230, C1	CASCAV-PR230	1	253 117	266 134	273 149	281 161	290 172	296 184	306 198	312 213
2. 255 K. SAGOVO I IZOO III ZIANI II IZOO, O I	MEDIA N-PR230	349	80%	85%	89%	92%	96%	99%	103%	106%
LT 230 kV MARING-PR230 - SARAND-PR230, C1	MARING-PR230	2	-221 -67	-229 -68	-239 -76	-247 -69	-252 -72	-259 -80	-259 -88	-268 -73
ET 200 KV MANINO-I N230 - SANAND-FN230, CT	SARAND-PR230	298	80%	83%	86%	88%	90%	93%	94%	95%
	MARING-PR230	1	-220 -67	-228 -68	-238 -76	-246 -69	-251 -72	-258 -80	-258 -88	-267 -73
LT 230 kV MARING-PR230 - SARAND-PR230, C2						2.0 00			200 00	

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
ATF-1 230/138 kV CASCAV-PR230 - CASCAV-	MED-T1-PR000	1	128 58	136 63	139 70	144 76	149 81	151 86	157 91	160 99
PR138	MEDIAN-PR138	180	77%	82%	86%	89%	93%	96%	100%	103%
ATF-2 230/138 kV CASCAV-PR230 - CASCAV-	MED-T1-PR000	1	129 58	136 63	140 70	145 76	149 80	152 86	158 91	160 98
PR138	MEDIA N-PR138	180	78%	83%	86%	90%	93%	96%	100%	103%
ATF-3 230/138 kV CASCAV-PR230 - CASCAV-	MED-T1-PR000	1	129 58	136 63	140 70	145 75	149 80	152 86	158 91	161 98
PR138	MEDIA N-PR138	180	78%	83%	86%	90%	93%	96%	100%	103%
ATF-1 230/138 kV LONDRC-PR230 - LONDRC-	LON-T3-PR000	1	129 35	135 37	140 39	146 38	150 40	159 39	156 41	167 32
PR138	LONDRC-PR138	180	74%	77%	81%	83%	86%	90%	89%	93%
ATF-2 230/138 kV LONDRC-PR230 - LONDRC-	LON-T3-PR000	1	130 37	135 39	141 42	146 40	150 40	159 39	157 43	167 32
PR138	LONDRC-PR138	180	75%	78%	81%	84%	86%	91%	90%	94%
TR-1 230/69 kV SQUITE-PR230 - SQUITE-PR069	SQT-T2-PR000	1	122 39	126 43	132 47	135 49	140 58	144 63	148 67	152 70
11-1 230/09 KV 3Q011E-FK230 - 3Q011E-FK009	SQUITE-PR069	180	71%	74%	77%	79%	84%	87%	90%	92%
TR-2 230/69 kV SQUITE-PR230 - SQUITE-PR069	SQT-T1-PR000	1	121 39	126 43	131 47	135 49	140 58	144 64	147 68	151 70
1R-2 230/09 KV 3Q011E-FR230 - 3Q011E-FR009	SQUITE-PR069	180	71%	73%	77%	79%	84%	87%	89%	92%
ATF-1 230/138 kV REALEZ-PR230 - REALEZ-	RZA-T2-PR000	1	123 41	133 51	138 56	140 50	143 54	146 58	149 57	156 76
PR138	REALEZ-PR138	180	72%	79%	83%	83%	86%	88%	89%	96%
ATF-2 230/138 kV REALEZ-PR230 - REALEZ-	RZA-T1-PR000	1	123 41	133 51	138 56	140 50	143 54	146 58	149 57	156 76
PR138	REALEZ-PR138	180	72%	79%	83%	83%	86%	88%	89%	96%

Tabela 17 -Violações de fluxo verificadas em condição de contingência simples no patamar de carga média cenário Norte Seco.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
LT 230 kV C.COMP-PR230 - SQUITE-PR230, C1	SQUITE-PR230	1	-184 -86	-190 -90	-196 -95	-202 -101	-207 -97	-213 -97	-219 -105	-225 -111
ET 200 KT C.OOMT T1200 GQGTET1200, GT	UMBARA-PR230	276	75%	78%	81%	84%	85%	87%	91%	93%
LT 230 kV UMBARA-PR230 - CURITI-PR230, C1	UMBARA-PR230	2	-648 -451	-673 -597	-686 -598	-692 -585	-698 -590	-722 -584	-705 -597	-688 -645
ET 250 KV SINDAIGA TIESO SOIGITT TIESO, ST	CURITI-PR230	814	96%	109%	111%	110%	111%	113%	112%	114%
LT 230 kV UMBARA-PR230 - CURITI-PR230, C2	UMBARA-PR230	1	-648 -451	-673 -597	-686 -598	-692 -585	-698 -590	-722 -584	-705 -597	-688 -645
ET 200 KV SINDAIGA TIESOV SOIGITT TIESOV, SE	CURITI-PR230	814	96%	109%	111%	110%	111%	113%	112%	114%
LT 230 kV CASCAV-PR230 - MEDIAN-PR230, C1	CASCVO-PR230	1	263 113	278 135	285 151	295 165	304 177	313 188	320 201	329 215
ET 250 KV GAGGAV TIESU MESIANTIESU, GT	MEDIA N-PR230	383	74%	79%	83%	86%	89%	92%	96%	99%
LT 230 kV CASCVO-PR230 - MEDIAN-PR230, C1	CASCAV-PR230	1	257 117	270 133	277 149	285 162	293 173	302 184	309 197	316 211
E1 230 KV CAGGVO-1 1230 - MESIAIFI 1230, C1	MEDIA N-PR230	349	81%	86%	89%	93%	97%	100%	103%	107%
ATF-1 230/138 kV APUCAR-PR230 - APUCAR-	APA-T2-PR000	1	120 71	125 75	130 81	135 84	139 73	144 89	148 87	153 91
PR138	APUCAR-PR138	195	71%	74%	78%	82%	81%	87%	88%	91%
ATF-2 230/138 kV APUCAR-PR230 - APUCAR-	APA-T1-PR000	1	120 71	125 75	130 80	135 84	139 73	145 89	149 87	153 91
PR138	APUCAR-PR138	195	71%	74%	78%	82%	81%	87%	88%	91%
ATF-1 230/138 kV FOZNOR-PR230 - FOZNOR-	MED-T1-PR000	1	143 55	152 60	155 68	161 74	166 79	171 83	175 88	180 95
PR138	MEDIAN-PR138	180	84%	90%	93%	97%	101%	104%	108%	112%
ATF-2 230/138 kV FOZNOR-PR230 - FOZNOR-	MED-T1-PR000	1	143 55	152 60	155 68	161 74	166 79	171 83	175 88	180 95
PR138	MEDIAN-PR138	180	84%	90%	93%	97%	101%	104%	108%	112%
ATF-1 230/138 kV GUAIRA-PR230 - GUAIRA-	MED-T1-PR000	1	127 59	136 64	138 72	143 77	147 82	152 87	156 92	161 98
PR138	MEDIAN-PR138	180	77%	83%	86%	89%	93%	96%	99%	103%
ATF-2 230/138 kV GUAIRA-PR230 - GUAIRA-	MED-T1-PR000	1	127 59	136 64	138 72	143 77	147 82	152 87	156 92	160 98
PR138	MEDIAN-PR138	180	77%	83%	86%	89%	93%	96%	99%	103%
ATF-3 230/138 kV GUAIRA-PR230 - GUAIRA-	MED-T1-PR000	1	127 59	136 64	138 72	143 77	147 82	152 87	156 92	160 98
PR138	MEDIAN-PR138	180	77%	83%	86%	89%	93%	96%	99%	103%

4.3 Estado de Santa Catarina - Análise do Desempenho Elétrico da Rede

Com base na avaliação dos casos base do Plano Decenal 2029 foram obtidas as seguintes constatações sobre o desempenho elétrico da rede no período 2024-2031:

- Em regime normal de operação, não foram verificadas violações dos limites de tensão em nenhum dos cenários avaliados.
- As simulações de contingências simples na malha de 525kV indicaram o esgotamento dos recursos de controle de tensão a partir do ano 2027, para o patamar de carga média do cenário Norte Úmido. Nessa condição, a contingência da linha de transmissão em 525kV Campos Novos Areia provoca colapso de tensão em todo o sistema que atende a região leste dos estados do Paraná e Santa Catarina. A contingência das linhas de transmissão Itá Salto Santiago C1 ou C2 ou Joinville Sul Areia, por outro lado, provoca o esgotamento dos recursos de controle de tensão no ano horizonte de análise (2031).
- Em condição de contingências simples da malha de 230kV do estado, apenas a perda da LT 230kV Biguaçu – Palhoça provoca afundamento dos níveis de tensão no barramento de 230kV da subestação Palhoça no patamar de carga média dos cenários Norte Seco e Norte Úmido.
- Nos cenários Norte Seco, patamar de carga média, foi verificado afundamento de tensão no barramento de 138kV da SE Tubarão Sul quando da contingência do único transformador dessa subestação.
- Nos cenários Norte Úmido e Norte Seco, patamar de carga média, foram verificados fluxos elevados (acima de 90% da capacidade nominal) em condição normal de operação na transformação de fronteira das subestações Forquilhinha e Siderópolis. Nesses mesmos cenários, foram verificadas sobrecargas em regime normal de operação na subestação Siderópolis, a partir do ano 2024. No patamar de carga média do cenário Norte Úmido foram verificados fluxos elevados na transformação de fronteira da SE Canoinhas 230/138kV a partir de 2029.
- Em condição normal de operação ou em condição de contingências simples não foram verificadas violações de carregamento em linhas de transmissão de 525kV ou de 230kV.
- Em condição de contingências simples nas transformações de fronteira, no patamar de carga média do cenário Norte Úmido ou Norte Seco, foram verificadas violações dos limites de carregamentos das subestações Forquilhinha (2028) e Siderópolis (2027). Nesse mesmo patamar de carga, no cenário Norte Seco, também são verificadas as sobrecargas nas transformações de fronteira dessas subestações.

É importante destacar que grande parte dos problemas identificados na malha de 525kV no diagnóstico dos casos base do Plano Decenal 2029 está associada ao desempenho elétrico dos sistemas que atendem as regiões metropolitanas de Curitiba e de Porto Alegre. Essas regiões foram objetos de análise do Estudo de Atendimento à Região Metropolitana de Curitiba – Volume 1 (EPE-DEE-RE-006-2018-rev0), que será posteriormente complementado pelo Volume 2 (previsão de término para dezembro de 2019), e do Estudo de Atendimento à Região Metropolitana de Porto Alegre – Volumes 1 e 2 (EPE-DEE-RE-088-2018-rev0 e EPE-DEE-RE-039/2019-rev0).

No caso específico das contingências da malha de 525kV (LTs Itá – Salto Santiago C1 ou C2, Campos Novos – Areia ou Joinville Sul – Areia), que se mostraram bastante severas para o desempenho elétrico do sistema, é importante destacar que no Volume 2 do estudo de atendimento à região metropolitana de Porto Alegre (Relatório EPE-DEE-RE-039/2019-rev0), recomendou novos eixos de transmissão em 525kV que reforçarão as interligações entre três estados da região sul. Dentre as principais recomendações desse estudo destacam-se as LTs 525kV Segredo – Abdon Batista 2 C1 e Ponta Grossa – Abdon Batista 2 C1 e C2.

As tabelas a seguir apresentam os principais resultados das simulações realizadas.

Tabela 18 -Violações de tensão verificadas em condição de contingência simples no patamar de carga média cenário Norte Úmido.

CONTINGÊNCIA	SUBESTAÇÃO	2024	2025	2026	2027	2028	2029	2030	2031
LT 525 kV JNVSUL-SC525 - AREIAPR525, C1	JNVSUL-SC525	96,8%	97,8%	96,9%	96,4%	95,3%	94,3%	94,5%	DIV
	CBALES-PR525	97,8%	98,7%	97,7%	97,2%	95,5%	96,2%	97,1%	94,2%
	CURITI-PR525	97,7%	98,5%	97,7%	97,3%	95,8%	96,5%	97,6%	94,9%
LT 525 kV ITASC525 - SSANTI-PR525, C1	JNVSUL-SC525	97,2%	98,2%	97,0%	97,0%	95,0%	95,6%	96,4%	93,3%
L1 323 KV 11A3C323 - 33AN11-FR323, C1	ITAJI2-SC525	97,5%	98,3%	97,8%	97,5%	95,4%	96,4%	96,9%	93,7%
	GASPAR-SC525	97,9%	99,0%	97,8%	97,7%	95,9%	96,8%	97,3%	94,1%
	BLUMEN-SC525	97,8%	98,6%	97,5%	97,8%	95,8%	96,8%	97,3%	94,2%
LT 525 kV ITASC525 - SSANTI-PR525, C2	JNVSUL-SC525	97,6%	98,7%	97,5%	97,5%	96,1%	96,3%	96,8%	94,5%
E1 323 KV 11A00323 - 00AKT1-1 1023, 02	ITAJI2-SC525	97,9%	98,7%	98,2%	97,9%	96,5%	97,0%	97,3%	94,9%
	CBALES-PR525	97,2%	97,5%	94,9%	NC	DIV	DIV	DIV	DIV
	JNVSUL-SC525	96,2%	96,5%	92,8%	NC	DIV	DIV	DIV	DIV
LT 525 kV CNOVOS-SC525 - AREIAPR525, C1	ITAJI2-SC525	96,9%	96,9%	93,7%	NC	DIV	DIV	DIV	DIV
E1 323 KV CNOV 03-30323 - AREA	GASPAR-SC525	97,2%	97,4%	93,6%	NC	DIV	DIV	DIV	DIV
	BLUMEN-SC525	97,1%	97,0%	93,3%	NC	DIV	DIV	DIV	DIV
	PATOBR-PR230	96,9%	97,7%	94,4%	NC	DIV	DIV	DIV	DIV
LT 230 kV BIGUAC-SC230 - PALHOC-SC230, C1	PALHOC-SC230	95,2%	98,4%	95,9%	97,8%	95,1%	96,8%	94,3%	94,4%

Tabela 19 – Violações de tensão verificadas em condição de contingência simples no patamar de carga média cenário Norte Seco.

CONTINGÊNCIA	SUBESTAÇÃO	2024	2025	2026	2027	2028	2029	2030	2031
LT 230 kV BIGUAC-SC230 - PALHOC-SC230, C1	PALHOC-SC230	91,6%	91,6%	91,8%	91,9%	91,6%	91,7%	91,5%	91,3%
ATF-1 230/138 kV TUBARB-SC230 - TUBARB-									
SC138	TUBARB-SC138	92,0%	91,5%	90,8%	90,0%	89,1%	88,1%	87,0%	86,1%

Tabela 20 – Violações de fluxo verificadas em condição normal de operação no patamar de carga média cenário Norte Úmido.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
	FORQUI-SC230	1	101 56	103 57	105 60	108 62	110 64	113 67	115 69	118 72
	FORQRB-SC069	150	76%	78%	80%	82%	84%	86%	89%	91%
	FORQUI-SC230	1	101 56	103 57	105 60	108 62	110 64	113 67	115 69	118 72
	FORQRB-SC069	150	76%	78%	80%	82%	84%	86%	89%	91%
Condição Normal	FORQUI-SC230	1	101 56	103 57	105 60	108 62	110 64	113 67	115 69	118 72
Condição Normai	FORQRB-SC069	150	76%	78%	80%	82%	84%	86%	89%	91%
	SIDERO-SC230	1	68 26	70 20	73 32	75 33	78 29	79 31	82 32	86 54
	SIDER1-SC000	88	82%	81%	88%	90%	90%	93%	97%	111%
	SIDERO-SC230	1	68 26	70 20	73 32	75 33	78 29	79 31	82 32	86 54
	SIDER1-SC000	88	82%	81%	88%	90%	90%	93%	97%	111%

Tabela 21 – Violações de fluxo verificadas em condição normal de operação no patamar de carga média cenário Norte Seco.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
	SIDERO-SC230	1	68 34	69 26	72 28	74 28	76 30	79 33	80 33	83 41
Condição Normal	SIDER1-SC000	88	84%	82%	85%	88%	90%	93%	95%	101%
Condição Normai	SIDERO-SC230	1	68 34	69 26	72 28	74 28	76 30	79 33	80 33	83 41
	SIDER1-SC000	88	84%	82%	85%	88%	90%	93%	95%	101%

Tabela 22 – Violações de fluxo verificadas em condição de contingência simples no patamar de carga média cenário Norte Úmido.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS E TRAFOS	NC	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar
		LIM.	%	%	%	%	%	%	%	%
ATF-2 230/138 kV CANOIN-SC230 - CANOIN-SC138	CANOIN-SC230	1	120 36	123 37	126 39	128 39	129 40	132 45	134 47	136 44
ATF-2 230/136 KV CANOIN-SC230 - CANOIN-SC136	CANOI1-SC000	159	80%	82%	86%	86%	87%	90%	91%	91%
ATF-3 230/138 kV CANOIN-SC230 - CANOIN-SC138	CA NOIN-SC230	1	121 36	123 37	127 39	128 39	130 40	133 45	134 47	136 44
ATT-0 250/150 KV CAROIN CO250 - CAROIN CO150	CANOI1-SC000	159	81%	83%	86%	86%	87%	91%	91%	91%
	SIDERO-SC230	1	71 26	73 20	76 32	79 32	81 29	83 31	85 32	89 54
TR-1 230/69 kV FORQUI-SC230 - FORQRB-SC069	SIDER1-SC000	88	84%	84%	91%	93%	93%	95%	100%	115%
	SIDERO-SC230	1	71 26	73 20	76 32	79 32	81 29	83 31	85 32	89 54
	SIDER1-SC000	88	84%	84%	91%	93%	93%	95%	100%	115%
	SIDERO-SC230	1	71 26	73 20	76 32	79 32	81 29	83 31	85 32	89 54
	SIDER1-SC000	88	84%	84%	91%	93%	93%	95%	100%	115%
	SIDERO-SC230	1	71 26	73 20	76 32	79 32	81 29	83 31	85 32	89 54
	SIDER1-SC000	88	84%	84%	91%	93%	93%	95%	100%	115%
TR-2 230/69 kV FORQUI-SC230 - FORQRB-SC069	FORQUI-SC230	1	140 86	142 87	146 90	150 94	152 97	156 101	160 104	163 108
	FORQRB-SC069 FORQUI-SC230	195 1	83% 140 86	85% 142 87	87% 146 90	89% 150 94	91%	93%	96%	99%
	FORQUESC230 FORQRB-SC069	195	83%	85%	87%	89%	152 97 91 %	156 101 93%	160 104 96%	163 108 99%
	FORQUI-SC230	195	140 86	142 87	146 90	150 94	152 97	156 101	160 104	163 108
	FORQRB-SC069	195	83%	85%	87%	89%	91%	93%	96%	99%
	SIDERO-SC230	1	71 26	73 20	76 32	79 32	81 29	83 31	85 32	89 54
	SIDER1-SC000	88	84%	84%	91%	93%	93%	95%	100%	115%
	SIDERO-SC230	1	71 26	73 20	76 32	79 32	81 29	83 31	85 32	89 54
	SIDER1-SC000	88	84%	84%	91%	93%	93%	95%	100%	115%
TR-3 230/69 kV FORQUI-SC230 - FORQRB-SC069	FORQUI-SC230	1	140 86	142 87	146 90	150 94	152 97	156 101	160 104	163 108
11-3 230/09 KV FORQUI-3C230 - FORQRD-3C009	FORQRB-SC069	195	83%	85%	87%	89%	91%	93%	96%	99%
	FORQUI-SC230	1	140 86	142 87	146 90	150 94	152 97	156 101	160 104	163 108
	FORQRB-SC069	195	83%	85%	87%	89%	91%	93%	96%	99%
	FORQUI-SC230	1	140 86	142 87	146 90	150 94	152 97	156 101	160 104	163 108
	FORQRB-SC069	195	83%	85%	87%	89%	91%	93%	96%	99%
	SIDERO-SC230	1	87 33	89 29	93 40	95 41	98 41	101 43	104 46	108 64
TR-1 230/69 kV SIDERO-SC230 - SIDEOB-SC069	SIDER1-SC000	88	102%	103%	111%	114%	116%	119%	124%	138%
	SIDERO-SC230	1	87 33	89 29	93 40	95 41	98 41	101 43	104 46	108 64
	SIDER1-SC000	88	102%	103%	111%	114%	116%	119%	124%	138%
	SIDERO-SC230	1	88 37	90 32	94 44	97 45	99 41	102 44	105 46	110 68
TR-2 230/69 kV SIDERO-SC230 - SIDEOB-SC069	SIDER1-SC000 SIDERO-SC230	88 1	106% 88 37	106% 90 32	115% 94 44	117% 97 45	117% 99 41	120% 102 44	126%	142% 110 68
	SIDERO-SC230 SIDER1-SC000	88	106%	106%	115%	117%	117%	102 44 120%	105 46 126%	142%
	SIDERO-SC230	1	89 38	91 33	95 45	98 47	100 42	103 44	105 47	111 69
	SIDERO-SC230 SIDER1-SC000	88	107%	107%	116%	118%	118%	122%	126%	143%
TR-4 230/69 kV SIDERO-SC230 - SIDEOB-SC069	SIDERO-SC230	1	89 38	91 33	95 45	98 47	100 42	103 44	105 47	111 69
	SIDER1-SC000	88	107%	107%	116%	118%	118%	122%	126%	143%
	SIDERO-SC230	1	69 26	70 20	73 32	75 33	78 29	80 31	82 32	86 54
ATE 4 000 MOD LV TUDADD 00000 TUD: TT 50 100	SIDER1-SC000	88	82%	81%	89%	90%	90%	93%	97%	111%
ATF-1 230/138 kV TUBARB-SC230 - TUBARB-SC138	SIDERO-SC230	1	69 26	70 20	73 32	75 33	78 29	80 31	82 32	86 54
	SIDER1-SC000	88	82%	81%	89%	90%	90%	93%	97%	111%

Tabela 23 –Violações de fluxo verificadas em condição de contingência simples no patamar de carga média cenário Norte Úmido.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS E TRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
	SIDERO-SC230	1	71 34	72 26	75 28	77 28	79 29	82 32	84 33	87 41
TR-1 230/69 kV FORQUI-SC230 - FORQRB-SC069	SIDER1-SC000	88	88%	85%	89%	91%	93%	97%	99%	105%
1R-1 230/09 KV FORQUI-SC230 - FORQRB-SC009	SIDERO-SC230	1	71 34	72 26	75 28	77 28	79 29	82 32	84 33	87 41
	SIDER1-SC000	88	88%	85%	89%	91%	93%	97%	99%	105%
	SIDERO-SC230	1	71 34	72 26	75 28	77 28	79 29	82 32	84 33	87 41
	SIDER1-SC000	88	88%	85%	89%	91%	93%	97%	99%	105%
	SIDERO-SC230	1	71 34	72 26	75 28	77 28	79 29	82 32	84 33	87 41
	SIDER1-SC000	88	88%	85%	89%	91%	93%	97%	99%	105%
TR-2 230/69 kV FORQUI-SC230 - FORQRB-SC069	FORQUI-SC230	1	141 79	145 83	148 86	151 89	155 93	158 97	161 100	165 105
111-2 230/03 KV 1 OKQOI-3C230 - 1 OKQKE-3C003	FORQRB-SC069	195	82%	85%	87%	89%	92%	94%	96%	99%
	FORQUI-SC230	1	141 79	145 83	148 86	151 89	155 93	158 97	161 100	165 105
	FORQRB-SC069	195	82%	85%	87%	89%	92%	94%	96%	99%
	FORQUI-SC230	1	141 79	145 83	148 86	151 89	155 93	158 97	161 100	165 105
	FORQRB-SC069	195	82%	85%	87%	89%	92%	94%	96%	99%
	SIDERO-SC230	1	71 34	72 26	75 28	77 28	79 29	82 32	84 33	87 41
	SIDER1-SC000	88	88%	85%	89%	91%	93%	97%	99%	105%
	SIDERO-SC230	1	71 34	72 26	75 28	77 28	79 29	82 32	84 33	87 41
	SIDER1-SC000	88	88%	85%	89%	91%	93%	97%	99%	105%
TR-3 230/69 kV FORQUI-SC230 - FORQRB-SC069	FORQUI-SC230	1	141 79	145 83	148 86	151 89	155 93	158 97	161 100	165 105
THE SECOND REPORTED SOCIAL PROPERTY OF THE SECOND	FORQRB-SC069	195	82%	85%	87%	89%	92%	94%	96%	99%
	FORQUI-SC230	1	141 79	145 83	148 86	151 89	155 93	158 97	161 100	165 105
	FORQRB-SC069	195	82%	85%	87%	89%	92%	94%	96%	99%
	FORQUI-SC230	1	141 79	145 83	148 86	151 89	155 93	158 97	161 100	165 105
	FORQRB-SC069	195	82%	85%	87%	89%	92%	94%	96%	99%
	SIDERO-SC230	1	86 43	88 36	91 37	93 38	96 40	100 44	102 45	105 53
TR-1 230/69 kV SIDERO-SC230 - SIDEOB-SC069	SIDER1-SC000	88	107%	106%	109%	111%	115%	119%	123%	130%
	SIDERO-SC230	1	86 43	88 36	91 37	93 38	96 40	100 44	102 45	105 53
	SIDER1-SC000	88	107%	106%	109%	111%	115%	119%	123%	130%
	SIDERO-SC230	1	87 46	89 39	92 41	95 43	98 44	101 48	104 49	107 57
TR-2 230/69 kV SIDERO-SC230 - SIDEOB-SC069	SIDER1-SC000	88	109%	108%	111%	115%	118%	123%	126%	133%
2 200,00 AT OIDERO GOZOU - GIDEOD-GOOOG	SIDERO-SC230	1	87 46	89 39	92 41	95 43	98 44	101 48	104 49	107 57
	SIDER1-SC000	88	109%	108%	111%	115%	118%	123%	126%	133%
	SIDERO-SC230	1	88 47	90 40	93 43	96 44	99 45	102 49	104 50	108 58
TR-4 230/69 kV SIDERO-SC230 - SIDEOB-SC069	SIDER1-SC000	88	110%	109%	114%	117%	119%	125%	127%	134%
THE PERSON AT CIDENCE COLORS COLORS	SIDERO-SC230	1	88 47	90 40	93 43	96 44	99 45	102 49	104 50	108 58
	SIDER1-SC000	88	110%	109%	114%	117%	119%	125%	127%	134%

4.4 Estado do Rio Grande do Sul - Análise do Desempenho Elétrico da Rede

Com base na avaliação dos casos base do Plano Decenal 2029 foram obtidas as seguintes constatações sobre o desempenho elétrico da rede no período 2024-2031:

- Em regime normal de operação, não foram verificadas violações dos limites de tensão em nenhum dos cenários avaliados.
- Em condição de contingência simples, no patamar de carga média dos cenários Norte Úmido
 e Norte Seco, as violações de tensão mais severas foram verificadas nas regiões central e
 sul do estado envolvendo as subestações Lajeado 2, Lajeado 3, Santa Cruz, Pelotas 3 e
 Quinta. Além dessa região, verificou-se degradação dos níveis de tensão da SE Charqueadas
 ao longo de todo o período de análise em decorrência da perda da LT 230kV Cidade
 Industrial Charqueadas.
- Também em condição de emergência simples na malha de 230kV, no patamar de carga média dos cenários Norte Úmido e Norte Seco, foram verificadas violações de tensão nas instalações de Rede Básica das regiões Norte e Noroeste do estado envolvendo as subestações Santa Marta, Tapera, Lagoa Vermelha e Guarita.
- Em regime normal de operação não foram verificadas violações dos limites de carregamento dos transformadores de fronteira e das linhas de transmissão de Rede Básica em nenhum doas cenários avaliados.
- Em contingências simples das transformações de fronteira, no patamar de carga média dos cenários Norte Úmido e Norte Seco, foram verificadas sobrecargas nas seguintes subestações:
 - ➤ SE 230/69kV Lajeado 2³, a partir de 2024, na contingência de um dos transformadores dessa subestação ou da SE 230/69kV Lajeado 3;
 - > SE 230/69kV Candelária 2, a partir de 2029, na contingência de uma de suas unidades transformadoras; e
 - > SE 230/69kV Guarita, a partir de 2029, na contingência de uma de suas unidades transformadoras.
 - ➤ SE 230/69kV e 230/138kV Santa Maria 3, a partir de 2029, na contingência de uma de suas unidades transformadoras.

³ A sobrecarga é verificada apenas em um dos transformadores da subestação (TR3 83/83MVA), pois o CPST não apresenta capacidade de emergência. Caso a capacidade de emergência desse transformador fosse similar aos demais (125MVA), não seriam verificadas sobrecargas no horizonte de análise do Plano Decenal.

- Além das questões apontadas anteriormente, em contingências simples das transformações de fronteira no patamar de carga média dos cenários Norte Úmido ou Norte Seco foram verificados fluxos elevados (acima de 90% da capacidade de emergência) nas seguintes subestações:
 - SE 230/69kV Viamão 3, a partir de 2030, na contingência de uma de suas unidades transformadoras;
 - SE 230/69kV Garibaldi, a partir de 2028, na contingência de uma de suas unidades transformadoras.
 - > SE 230/138kV Pelotas 3, a partir de 2030, na contingência de uma de suas unidades transformadoras.

É importante ressaltar que no caso específico da subestação Viamão 3, é esperada uma redução significativa dos fluxos na transformação de fronteira a partir da implantação da subestação Porto Alegre 19, que foi recomendada no estudo EPE-DEE-RE-039/2019-rev0 - Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Metropolitana de Porto Alegre – Volume 2 e ainda não está representada nos casos base do Plano Decenal.

As tabelas a seguir apresentam os principais resultados das simulações realizadas.

Tabela 24 – Violações de tensão verificadas em condição de contingência simples no patamar de carga média cenário Norte Úmido.

CONTINGÊNCIA	SUBESTAÇÃO	2024	2025	2026	2027	2028	2029	2030	2031
LT 230 kV N.S.RI-RS230 - LAJEAD-RS230, C1	LAJEAD-RS230	97,9%	97,1%	97,2%	96,2%	95,2%	95,7%	94,8%	93,8%
E1 250 KV N.O.N-NO250 - EAGEAD-NO250, 01	LAJEA3-RS230	98,3%	97,6%	97,7%	96,7%	95,7%	96,3%	95,1%	94,3%
LT 230 kV C.INDU-RS230 - CHARQU-RS230, C1	CHARQU-RS230	95,3%	95,2%	95,1%	93,5%	93,3%	93,6%	92,3%	92,9%
21 230 KV 0.11450-10230 - 01141100-110230, 01	STACRU-RS230	96,3%	96,1%	95,9%	94,7%	94,7%	94,5%	94,8% 95,1%	93,3%
LT 230 kV ITAUBA-RS230 - STACRU-RS230, C1	STACRU-RS230	95,1%	94,6%	94,3%	93,5%	92,6%	92,2%	89,9%	90,0%
LT 230 kV STACRU-RS230 - CHARQU-RS230, C1	STACRU-RS230	96,6%	96,2%	95,9%	95,1%	95,4%	94,7%	94,0%	93,1%
LT 230 kV PMEDIC-RS230 - STACRU-RS230, C1	STACRU-RS230	95,9%	95,1%	95,3%	94,4%	93,5%	93,5%	92,9%	92,8%
LT 230 kV P.REAL-RS230 - TAPERA-RS230. C1	STAMAR-RS230	97,2%	97,7%	97,1%	96,3%	97,1%	96,0%	94,9%	95,0%
E1 250 KV F.NEAE-N5250 - TAPENA-N5250, C1	TAPERA-RS230	96,3%	96,7%	96,1%	95,2%	96,0%	94,5%	95,1% 92,3% 93,5% 89,9% 94,0% 92,9% 94,9% 92,8% 93,4% 92,7% 94,2%	93,4%
LT 230 kV B.GRAN-SC230 - LVERME-RS230, C1	STAMAR-RS230	97,2%	96,1%	96,3%	94,6%	95,0%	94,2%	93,4%	93,7%
E1 250 KV B.GIVAIY-00250 - EVENINE-10250, 01	LVERME-RS230	97,6%	96,3%	96,3%	94,1%	94,6%	93,6%	92,7%	92,9%
LT 230 kV F.CHAP-SC230 - GUARIT-RS230, C1	GUARIT-RS230	97,3%	96,0%	96,7%	94,8%	96,4%	95,3%	94,2%	94,3%
LT 230 kV PVNRS230 - QUINTA-RS230, C2	PELOTA-RS230	95,1%	95,0%	94,2%	93,4%	93,9%	93,1%	90,6%	90,0%
L1 250 KV FVI	QUINTA-RS230	95,3%	95,4%	94,4%	93,6%	94,1%	93,2%	90,0%	89,3%
LT 230 kV PELOTA-RS230 - QUINTA-RS230, C1	PELOTA-RS230	94,8%	94,7%	93,9%	93,4%	93,8%	93,1%	92,2%	91,7%

Tabela 25 – Violações de tensão verificadas em condição de contingência simples no patamar de carga média cenário Norte Seco.

CONTINGÊNCIA	SUBESTAÇÃO	2024	2025	2026	2027	2028	2029	2030	2031
LT 230 kV C.INDU-RS230 - CHARQU-RS230, C1	CHARQU-RS230	94,8%	94,8%	94,9%	94,7%	94,4%	94,2%	94,1%	93,9%
21 230 KV 0.IND0-N0230 - 011ANQ0-N0230, 01	STACRU-RS230	95,2%	95,0%	95,0%	94,7%	94,5%	94,1%		93,7%
LT 230 kV ITAUBA-RS230 - STACRU-RS230, C1	STACRU-RS230	93,0%	92,7%	93,0%	92,2%	91,7%	91,4%	91,1%	90,5%
LT 230 kV PELOTA-RS230 - QUINTA-RS230, C1	PELOTA-RS230	92,8%	92,5%	92,6%	92,2%	92,0%	91,5%	91,4%	91,2%
LT 230 kV PMEDIC-RS230 - STACRU-RS230, C1	STACRU-RS230	94,7%	94,5%	94,6%	94,0%	93,8%	93,5%	93,3%	93,1%
LT 230 kV P.REAL-RS230 - TAPERA-RS230, C1	TAPERA-RS230	95,4%	95,1%	96,6%	95,1%	95,9%	95,4%	95,0%	93,7%
LT 230 kV STACRU-RS230 - CHARQU-RS230, C1	STACRU-RS230	95,4%	95,0%	95,0%	94,6%	94,3%	93,8%	93,7%	93,4%
LT 230 kV PVNRS230 - QUINTA-RS230, C2	PELOTA-RS230	93,7%	93,4%	93,6%	93,1%	92,6%	92,1%	92,0%	91,7%
21 200 KT 1 TH 10200 - QUINTA-10200, 02	QUINTA-RS230	94,0%	93,7%	93,9%	93,5%	92,9%	92,4%	94,1% 94,0% 91,1% 91,4% 93,3% 95,0%	91,8%

Tabela 26 –Violações de fluxo verificadas em condição normal de operação no patamar de carga média cenário Norte Úmido.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar	MW Mvar
		LIM.	%	%	%	%	%	%	%	%
	CANDEL-RS230	1	72 15	74 16	76 17	78 19	80 20	80 21	83 23	84 24
TR-2 230/69 kV CANDEL-RS230 - CANDE2-	CANDE2-RS069	83	87%	89%	92%	95%	98%	99%	102%	104%
RS069	CANDEL-RS230	1	72 15	74 16	76 17	78 19	80 20	80 21	83 23	84 24
	CANDE2-RS069	83	87%	89%	92%	95%	98%	99%	102%	104%
	S.MARI-RS230	1	65 22	67 25	70 27	71 30	73 32	75 35	76 38	78 40
ATF-2 230/138 kV S.MARI-RS230 - SMARI3-	SMARI3-RS138	83	81%	86%	89%	93%	95%	99%	102%	106%
RS138	S.MARI-RS230	1	65 22	67 25	70 27	71 30	73 32	75 35	76 38	78 40
	SMARI3-RS138	83	81%	86%	89%	93%	95%	99%	102%	106%
	S.MARI-RS230	1	67 19	70 20	72 22	74 23	76 25	78 27	80 29	83 31
	SMARI3-RS069	83	83%	87%	89%	94%	95%	99%	102%	106%
TR-2 230/69 kV S.MARI-RS230 - SMARI3-	S.MARI-RS230	1	67 19	70 20	72 22	74 23	76 25	78 27	80 29	83 31
RS069	SMARI3-RS069	83	83%	87%	89%	94%	95%	99%	102%	106%
	S.MARI-RS230	1	67 19	70 20	72 22	74 23	76 25	78 27	80 29	83 31
	SMARI3-RS069	83	83%	87%	89%	94%	95%	99%	102%	106%
	S.MARI-RS230	1	67 19	69 20	72 22	74 23	76 24	78 26	80 29	83 31
	SMARI3-RS069	83	83%	87%	89%	94%	95%	99%	102%	106%
TR-3 230/69 kV S.MARI-RS230 - SMARI3-	S.MARI-RS230	1	67 19	69 20	72 22	74 23	76 24	78 26	80 29	83 31
RS069	SMARI3-RS069	83	83%	87%	89%	94%	95%	99%	102%	106%
	S.MARI-RS230	1	67 19	69 20	72 22	74 23	76 24	78 26	80 29	83 31
	SMARI3-RS069	83	83%	87%	89%	94%	95%	99%	102%	106%
	VIAMAO-RS230	1	61 23	61 24	63 24	64 26	66 27	67 28	69 29	70 31
	VIA3RS069	83	77%	78%	80%	81%	86%	87%	90%	92%
TR-2 230/69 kV VIAMAO-RS230 - VIA3 RS069	VIAMAO-RS230	1	61 23	61 24	63 24	64 26	66 27	67 28	69 29	70 31
RS069	VIA3RS069	83	77%	78%	80%	81%	86%	87%	90%	92%
	VIAMAO-RS230	1	61 23	61 24	63 24	64 26	66 27	67 28	69 29	70 31
	VIA3RS069	83	77%	78%	80%	81%	86%	87%	90%	92%
	VIAMAO-RS230	1	61 23	61 24	63 24	64 26	66 27	67 28	69 29	70 31
	VIA3RS069	83	77%	78%	80%	81%	86%	87%	90%	92%
TR-3 230/69 kV VIAMAO-RS230 - VIA3 RS069	VIAMAO-RS230	1	61 23	61 24	63 24	64 26	66 27	67 28	69 29	70 31
13009	VIA3RS069	83	77%	78%	80%	81%	86%	87%	90%	92%
	VIAMAO-RS230	1	61 23	61 24	63 24	64 26	66 27	67 28	69 29	70 31
	VIA3RS069	83	77%	78%	80%	81%	86%	87%	90%	92%
TD 4 000 00 1 V 1 4 1F4D D0000	LAJEAD-RS230	1	78 57	80 58	83 60	85 60	87 64	89 63	90 55	94 65
TR-1 230/69 kV LAJEAD-RS230 - LAJEA2- RS069	AJ2-TA-RS000	125	77%	79%	82%	84%	88%	89%	86%	94%
	LAJEAD-RS230	1 125	77 55	79 56	82 58	84 59	86 63	88 62	89 55	93 64 93%
	AJ2-TB-RS000		76%	78%	80%	83%	87%	88%	86%	
TR-2 230/69 kV LAJEAD-RS230 - LAJEA2-	LAJEAD-RS230	1	79 57	81 58	83 60 124%	86 61	88 64	90 63	91 56	95 66
RS069	LAJE3A-RS000	83		120%		128%	134%	135%	131%	143%
	LAJEAD-RS230 AJ2-TB-RS000	1 125	77 55 75%	79 56 78%	81 58 80%	83 59 82%	86 62 86%	88 62 87%	88 54 85%	93 63 92%
TR-3 230/69 kV LAJEAD-RS230 - LAJEA2-	LAJEAD-RS230	1 83	79 56	81 57 119%	83 59	85 60 128 %	88 64 134%	90 63 135%	90 55 131%	95 65 142%
RS069	LAJE3A-RS000	83	78 56	***************************************	82 59	128% 84 59	134% 86 63	•••••	•••••	•••••
	LAJEAD-RS230 AJ2-TA-RS000	1 125	78 56 76%	79 57 78%	82 59 81%	84 59 83%	86 63	88 62 88%	89 54 86%	93 64 93 %
TR-1 230/69 kV GARIBA-RS230 - GARIBA-										
RS069	LAJEAD-RS230	1 83	58 34 81%	60 35	62 36	63 36	65 38 93%	67 38 94%	67 33 93%	70 39 100%
	LAJE3A-RS000		0.75	83%	86%	88%				
TR-2 230/69 kV GARIBA-RS230 - GARIBA- RS069	LAJEAD-RS230	1	58 34	60 35	62 36	63 36	65 38	67 38	67 33	70 39
	LAJE3A-RS000	83	81%	83%	86%	88%	93%	94%	93%	100%

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS E TRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
	GUARIT-RS230	1	70 26	72 27	74 28	76 30	77 32	78 33	80 35	82 37
	GUARIT-RS069	83	90%	94%	96%	100%	101%	105%	107%	111%
TR-2 230/69 kV GUARIT-RS230 - GUARIT-	GUARIT-RS230	1	70 26	72 27	74 28	76 30	77 32	78 33	80 35	82 37
RS069	GUARIT-RS069	83	90%	94%	96%	100%	101%	105%	107%	111%
	GUARIT-RS230	1	70 26	72 27	74 28	76 30	77 32	78 33	80 35	82 37
	GUARIT-RS069	83	90%	94%	96%	100%	101%	105%	107%	111%
	GUARIT-RS230	1	70 26	72 27	74 28	76 30	77 32	78 33	80 35	82 37
	GUARIT-RS069	83	90%	94%	96%	100%	101%	105%	107%	111%
TR-3 230/69 kV GUARIT-RS230 - GUARIT-	GUARIT-RS230	1	70 26	72 27	74 28	76 30	77 32	78 33	80 35	82 37
RS069	GUARIT-RS069	83	90%	94%	96%	100%	101%	105%	107%	111%
	GUARIT-RS230	1	70 26	72 27	74 28	76 30	77 32	78 33	80 35	82 37
	GUARIT-RS069	83	90%	94%	96%	100%	101%	105%	107%	111%
TR-1 230/69 kV LAJEA3-RS230 - LAJEA3-	LAJEAD-RS230	1	67 32	69 33	71 34	73 35	75 37	77 37	78 32	81 38
RS069	LAJE3A-RS000	83	89%	93%	95%	99%	102%	104%	104%	111%
TR-2 230/69 kV LAJEA3-RS230 - LAJEA3-	LAJEAD-RS230	1	67 32	69 33	71 34	73 35	75 37	77 37	78 32	81 38
RS069	LAJE3A-RS000	83	89%	93%	95%	99%	102%	104%	104%	111%

Tabela 27 - Violações de fluxo verificadas em condição de contingência simples no patamar de carga média cenário Norte Seco.

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar							
		LIM.	%	%	%	%	%	%	%	%
	PELOTA-RS230	1	75 58	77 60	79 61	82 64	84 64	86 67	88 68	89 69
	PEL3RS138	125	78%	80%	82%	85%	87%	90%	91%	92%
ATF-2 230/138 kV PELOTA-RS230 - PEL3	PELOTA-RS230	1	75 58	77 60	79 61	82 64	84 64	86 67	88 68	89 69
RS138	PEL3RS138	125	78%	80%	82%	85%	87%	90%	91%	92%
	PELOTA-RS230	1	75 58	77 60	79 61	82 64	84 64	86 67	88 68	89 69
	PEL3RS138	125	78%	80%	82%	85%	87%	90%	91%	92%
	PELOTA-RS230	1	75 58	77 60	79 61	82 64	84 64	86 67	88 68	89 69
	PEL3RS138	125	78%	80%	82%	85%	87%	90%	91%	92%
ATF-3 230/138 kV PELOTA-RS230 - PEL3	PELOTA-RS230	1	75 58	77 60	79 61	82 64	84 64	86 67	88 68	89 69
RS138	PEL3RS138	125	78%	80%	82%	85%	87%	90%	91%	92%
	PELOTA-RS230	1	75 58	77 60	79 61	82 64	84 64	86 67	88 68	89 69
	PEL3RS138	125	78%	80%	82%	85%	87%	90%	91%	92%
	CANDEL-RS230	1	73 15	74 15	77 17	79 19	81 20	82 21	84 23	85 24
TR-2 230/69 kV CANDEL-RS230 - CANDE2-	CANDE2-RS069	83	88%	90%	93%	96%	99%	100%	102%	105%
RS069	CANDEL-RS230	1	73 15	74 15	77 17	79 19	81 20	82 21	84 23	85 24
	CANDE2-RS069	83	88%	90%	93%	96%	99%	100%	102%	105%
	S.MARI-RS230	1	50 23	53 26	55 28	57 31	59 33	62 36	64 38	68 40
ATF-2 230/138 kV S.MARI-RS230 - SMARI3-	SMARI3-RS138	83	65%	70%	73%	77%	81%	84%	88%	94%
RS138	S.MARI-RS230	1	50 23	53 26	55 28	57 31	59 33	62 36	64 38	68 40
	SMARI3-RS138	83	65%	70%	73%	77%	81%	84%	88%	94%
	VIAMAO-RS230	1	62 22	63 24	64 25	66 25	67 26	69 27	71 29	73 30
	VIA3RS069	83	80%	81%	82%	84%	87%	89%	92%	94%
TR-2 230/69 kV VIAMAO-RS230 - VIA3	VIAMAO-RS230	1	62 22	63 24	64 25	66 25	67 26	69 27	71 29	73 30
RS069	VIA3RS069	83	80%	81%	82%	84%	87%	89%	92%	94%
	VIAMAO-RS230	1	62 22	63 24	64 25	66 25	67 26	69 27	71 29	73 30
	VIA3RS069	83	80%	81%	82%	84%	87%	89%	92%	94%
	VIAMAO-RS230	1	62 22	63 24	64 25	66 25	67 26	69 27	71 29	73 30
	VIA3RS069	83	80%	81%	82%	84%	87%	89%	92%	94%
TR-3 230/69 kV VIAMAO-RS230 - VIA3	VIAMAO-RS230	1	62 22	63 24	64 25	66 25	67 26	69 27	71 29	73 30
RS069	VIA3RS069	83	80%	81%	82%	84%	87%	89%	92%	94%
	VIAMAO-RS230	1	62 22	63 24	64 25	66 25	67 26	69 27	71 29	73 30
	VIA3RS069	83	80%	81%	82%	84%	87%	89%	92%	94%

		NC/LIM	2024	2025	2026	2027	2028	2029	2030	2031
CONTINGÊNCIA	LINHAS ETRAFOS	NC	MW Mvar	MW Mvar	MW Mvar					
		LIM.	%	%	%	%	%	%	%	%
	GUARIT-RS230	1	66 26	67 28	69 27	71 29	73 30	75 32	77 34	78 36
	GUARIT-RS069	83	86%	88%	90%	94%	95%	99%	101%	106%
TR-2 230/69 kV GUARIT-RS230 - GUARIT-	GUARIT-RS230	1	66 26	67 28	69 27	71 29	73 30	75 32	77 34	78 36
RS069	GUARIT-RS069	83	86%	88%	90%	94%	95%	99%	101%	106%
	GUARIT-RS230	1	66 26	67 28	69 27	71 29	73 30	75 32	77 34	78 36
	GUARIT-RS069	83	86%	88%	90%	94%	95%	99%	101%	106%
	GUARIT-RS230	1	66 26	67 28	69 27	71 29	73 30	75 32	77 34	78 36
	GUARIT-RS069	83	86%	88%	90%	94%	95%	99%	101%	106%
TR-3 230/69 kV GUARIT-RS230 - GUARIT-	GUARIT-RS230	1	66 26	67 28	69 27	71 29	73 30	75 32	77 34	78 36
RS069	GUARIT-RS069	83	86%	88%	90%	94%	95%	99%	101%	106%
	GUARIT-RS230	1	66 26	67 28	69 27	71 29	73 30	75 32	77 34	78 36
	GUARIT-RS069	83	86%	88%	90%	94%	95%	99%	101%	106%
	LAJEAD-RS230	1	79 56	81 57	91 42	93 44	96 46	99 49	101 51	105 55
TR-1 230/69 kV LAJEAD-RS230 - LAJEA2-	AJ2-TA-RS000	125	78%	79%	80%	82%	86%	89%	92%	96%
RS069	LAJEAD-RS230	1	78 55	80 56	90 40	92 42	95 45	97 47	100 50	104 53
	AJ2-TB-RS000	125	76%	78%	78%	82%	84%	87%	90%	94%
	LAJEAD-RS230	1	80 56	82 57	92 41	94 44	97 46	99 49	102 51	106 55
TR-2 230/69 kV LAJEAD-RS230 - LAJEA2- RS069	LAJE3A-RS000	83	118%	120%	122%	125%	130%	135%	140%	146%
K3069	LAJEAD-RS230	1	78 55	80 56	89 41	91 43	94 45	97 47	99 50	103 53
	AJ2-TB-RS000	125	76%	78%	78%	81%	84%	86%	90%	94%
	LAJEAD-RS230	1	80 55	82 56	91 40	93 43	96 45	99 48	102 51	105 54
TR-3 230/69 kV LAJEAD-RS230 - LAJEA2- RS069	LAJE3A-RS000	83	117%	119%	120%	124%	129%	134%	139%	145%
10003	LAJEAD-RS230	1	78 55	80 56	90 41	92 43	94 45	97 48	100 50	103 53
	AJ2-TA-RS000	125	77%	78%	79%	82%	84%	87%	90%	94%
	S.MARI-RS230	1	60 17	62 19	64 20	67 21	69 23	72 25	75 27	77 29
	SMARI3-RS069	83	73%	77%	80%	83%	87%	90%	94%	99%
TR-2 230/69 kV S.MARI-RS230 - SMARI3- RS069	S.MARI-RS230	1	60 17	62 19	64 20	67 21	69 23	72 25	75 27	77 29
	SMARI3-RS069	83	73%	77%	80%	83%	87%	90%	94%	99%
	S.MARI-RS230 SMARI3-RS069	1 83	60 17 73%	62 19 77%	64 20 80%	67 21 83%	69 23 87%	72 25 90 %	75 27 94%	77 29 99%
		1								
	S.MARI-RS230 SMARI3-RS069	83	59 17 73%	62 18 76%	64 20 80%	66 21 83%	69 23 87%	72 25 90 %	74 27 94 %	77 29 99%
TR-3 230/69 kV S.MARI-RS230 - SMARI3-	S.MARI-RS230	03 1	59 17	62 18	64 20	66 21	69 23	72 25	74 27	77 29
RS069	SMARI3-RS069	83	73%	76%	80%	83%	87%	90%	94%	99%
	S.MARI-RS230	1	59 17	62 18	64 20	66 21	69 23	72 25	74 27	77 29
	SMA RI3-RS069	83	73%	76%	80%	83%	87%	90%	94%	99%
	LAJEAD-RS230	1	68 32	69 33	61 24	63 25	65 27	67 29	69 30	71 32
TR-1 230/69 kV LAJEA3-RS230 - LAJEA3-	LAJE3A-RS000	83	90%	93%	80%	82%	84%	88%	92%	95%
RS069	LAJEA3-RS230	1	64 -24	66 -21	98 7	101 9	104 11	107 13	111 14	114 17
	LAJE3RS000	100	68%	70%	99%	102%	105%	109%	113%	117%
	LAJEAD-RS230	1	68 32	69 33	61 24	63 25	65 27	67 29	69 30	71 32
TR-2 230/69 kV LAJEA3-RS230 - LAJEA3-	LAJE3A-RS000	83	90%	93%	80%	82%	84%	88%	92%	95%
RS069	LAJEA3-RS230	1	64 -24	66 -21	98 7	101 9	104 11	107 13	111 14	114 17
	LAJE3B-RS000	100	68%	70%	99%	102%	105%	109%	113%	117%
L	02020000	.00	3370	. 570	5570	.0270	.0070	.0070		70

5 REFERÊNCIAS

- [1] EPE. Empresa de Pesquisa Energética, 2005. Diretrizes para Elaboração dos Relatórios Técnicos Referentes às Novas Instalações da Rede Básica (EPE-DEE-RE-001/2005-R1).
- [2] CCPE. Comitê Coordenador do Planejamento da Expansão dos Sistemas Elétricos, 2002. Critérios e Procedimentos para o Planejamento da Expansão dos Sistemas de Transmissão Volume 2.
- [3] ONS. Operador Nacional do Sistema Elétrico, 2011. Diretrizes e Critérios para Estudos Elétricos Procedimentos de Rede Submódulo 23.3 Revisão 2016.12.
- [4] ANEEL, 2016. Procedimento de distribuição (submódulo 2) Revisão 7
- [5] EPE. Empresa de Pesquisa Energética, 2017. Plano Decenal da Transmissão 2027.
- [6] EPE-DEE-RE-69/2015-rev1 Estudo de Atendimento Elétrico ao Estado do Mato Grosso do Sul, 2015.
- [7] EPE-DEE-RE-01/2019-rev0 Atendimento Elétrico ao Estado do Mato Grosso do Sul: Região de Naviraí.
- [8] EPE-DEE-RE-13/2013-rev0 Estudo de Atendimento ao Estado do Paraná Região Oeste e Sudoeste, 2013.
- [9] EPE-DEE-RE-32/2015-rev0 Estudo de Atendimento Elétrico ao Estado do Paraná: Regiões Norte e Noroeste, 2015.
- [10] EPE-DEE-RE-133/2015-rev2 Estudo de Atendimento ao Estado do Paraná: Região Centro-sul, 2017.
- [11] EPE-DEE-RE-006/2018-rev0 Estudo de Atendimento Elétrico ao Estado do Paraná: Região Metropolitana de Curitiba e Litoral Volume 1.
- [12] EPE-DEE-DEA-RE-09/2013-rev1 Estudo de Atendimento Elétrico ao Estado de Santa Catarina: Regiões Sul e Extremo Sul, 2017.
- [13] EPE-DEE-RE-86/2014-rev2 Estudo de Atendimento Elétrico ao Estado de Santa Catarina: Região de Florianópolis, 2016.
- [14] EPE-DEE-RE-132/2015-rev2 Estudo de Atendimento ao Estado de Santa Catarina: Regiões Norte e Vale do Itajaí, 2018.

- [15] EPE-DEE-RE-49/2017-rev0 Estudo de Atendimento Elétrico ao Estado de Santa Catarina: Região Oeste, 2017.
- [16] EPE-DEE-RE-70/2010-rev1 Estudo de Suprimento Elétrico ao Estado do Rio Grande do Sul Região Sul, 2010.
- [17] EPE-DEE-RE-030/2014-rev0 Estudo de Atendimento Elétrico ao Litoral Norte do Rio Grande do Sul, 2014.
- [18] EPE-DEE-DEA-RE-006/2014-rev3 Estudo Prospectivo para Avaliação da Integração do Potencial Eólico do Estado do Rio Grande do Sul, 2014.
- [19] EPE-DEE-RE-056/2017-rev0 Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Serrana, 2017.
- [20] EPE-DEE-RE-002/2017-rev0 Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região de Cruz Alta, 2017.
- [21] EPE-DEE-RE-088-2018-rev0 Estudo de Atendimento à Região Metropolitana de Porto Alegre, Volume 1, 2018.
- [22] EPE-DEE-RE-039/2019-rev0 Estudo de Atendimento Elétrico ao Estado do Rio Grande do Sul: Região Metropolitana de Porto Alegre Volume 2.

6 EQUIPE TÉCNICA

- Thiago Dourado (EPE/STE)
- Marcos Farinha (EPE/STE)
- Rodrigo Ribeiro (EPE/STE)
- Jean Morassi (EPE/STE)